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Introduction 

Cigarette smoking is associated with lung cancer, cardiovascular disease, and chronic 

respiratory conditions. It is responsible for high mortality and morbidity risk in the US 

population. Smokers find sudden quitting difficult and it is reported that a large number of 

unassisted quitting attempts are eventually unsuccessful. Electronic cigarette or e-cig is a 

novel battery-driven, nicotine delivery product, currently being used as a smoking 

cessation tool by current and former smokers. Since its resemblance to a conventional 

cigarette, and its non-combustible nature, e-cig use has risen exponentially in the last few 

years. To address such public health issues, the US FDA is working on formulating 
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regulations to manufacture, market, and distribute e-cigs has called for research evidence 

on the long term use of e-cig use.  

Objective 

The objective of this study was to develop and validate a Discrete Event Simulation model 

to simulate the electronic cigarette (e-cig) use behavior, and to estimate the long term e-cig 

use prevalence, in different groups of the US population.  

Methods 

The model population was generated from analyzing the National Health Interview Survey 

data from 2011-2013. The population was categorized into current, recent former, late 

former and never smokers. Population birth rates and death rates were applied using the 

2012 US Census Bureau data. Model parametrization, transition probabilities and e-cig 

related risks were obtained and applied using cross sectional survey and longitudinal e-cig 

studies done on US population. The model was run for the period of 15 years and e-cig use 

prevalence at the end of the simulation period was estimated. Each simulation was 

replicated 100 times using Monte Carlo simulation approach. Model validation was 

performed by the use of null and extreme input values (internal validation), examining 

programing codes (debugging), verification by tobacco science and system analysis experts 

(structural and technical validation), comparison of model’s first year results with CDC 

reports (external validation). 
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Conclusion 

Total projected e-cig prevalence in the US population at the end of simulation of period was 

found to be around 19%. The results showed a gradual reduction in the number of 

conventional cigarette smokers and an increase in the e-cig users over the simulation 

period. Highest e-cig users were <21 years old, male, white and had less than high school 

level education. Sensitivity analyses of various model parameters showed that the e-cig 

prevalence was most sensitive to the impact and timing of policy implementation.  

As a novel nicotine delivery system, e-cigs are rapidly gaining acceptance in the US and 

recent reports have shown an exponential rise in the popularity of e-cig among minors and 

young adults. Our research provides empirical evidence that can be used by the scientific 

community and regulatory bodies to formulate regulations for marketing and sales of e-

cigs in various sections of the population, where the prevalence is expected to rise in 

future. Our study can also guide the policy makers to introduce relevant policies at specific 

time points when the e-cig use is expected to rise.
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Background 

 

Cigarette smoking is an important and preventable cause of morbidity in the US associated 

with lung cancer, cardiovascular disease, and chronic respiratory conditions. Recent US 

health care reports (How tobacco smoke causes disease.2010; Health consequence of 

smoking: US surgeon general report.2014) have shown that smokers are at greater risk than 

non-smokers for diseases that affect the heart and blood vessels (cardiovascular disease), 

eventually leading to stroke and coronary heart disease. Further, smoking can cause lung 

diseases by damaging the airways and the small air sacs (alveoli) found in the lungs. This 

leads to COPD, which includes emphysema and chronic bronchitis (Health consequence of 

smoking: US surgeon general report.2014). Cigarette smoking also causes most cases of lung 

cancer in the country (How tobacco smoke causes disease.2010; Health consequence of 

smoking: US surgeon general report.2014). In terms of mortality, the US Centers for Disease 

Control and Prevention (CDC) reports that approximately 443,000 deaths occur annually in 

the US due to smoking, including those from secondhand smoke (Agaku, King, Husten, & 

Bunnell, 2014).  

Along with negative health effects, smoking also results in a high economic burden. Annual 

smoking-attributable economic costs in the United States estimated for the years 2009–

2012 were more than $289 billion, which included approximately $133 billion for direct 

medical care of adults and more than $156 billion for indirect costs due to lost productivity 

(Health consequence of smoking: US surgeon general report.2014). 
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Although cigarette smoking is declining among U.S. adults over the past five decades, there 

is still a high proportion of population smoking cigarettes and other tobacco products 

(Agaku et al., 2014). During 2012–2013, the US surgeon general report identified 

approximately one in five U.S. adults (total of 50 million persons) used any tobacco product 

every day or some days, and an estimated 60 million people used tobacco products every 

day, some days, or rarely (How tobacco smoke causes disease.2010; Health consequence of 

smoking: US surgeon general report.2014) . The majority of the smoking population 

consisted of young adults and teenagers. A report from the Center of disease control and 

prevention (CDC) indicated that the prevalence of current tobacco product use among 

middle and high school students was 6.7% and 23.3%, respectively (CDC morbidity and 

mortality report.2013).                                                                        

Offering help to quitting tobacco use in people addicted to nicotine is one of the most 

important policies identified by the World Health Organization (WHO) Framework 

Convention on Tobacco Control (FCTC) to expand the fight against the tobacco epidemic 

(WHO.2012). However, due to the addictive nature of nicotine, most of the smokers are bio-

behaviorally addicted. That is, not only they are dependent on the biological constituents of 

tobacco, but are also dependent on the behavior aspect of using tobacco products like 

holding and puffing on cigarettes.  

Quitting smoking can be very difficult and is often accompanied by variety of withdrawal 

symptoms (Benowitz, 1991). Approximately, 70% of smokers try to quit, but less than 5% 

of unassisted attempts are successful (Benowitz, 1991). Sudden quitting may also result in 

fatigue, dizziness, nicotine withdrawal, irritability, anger, frustration, sad mood, anxiety, 
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decreased concentration, hunger, insomnia, restlessness, decreased heart rate, weight gain 

and an eventual relapse of smoking (Benowitz, 1991; Siegel, Tanwar, & Wood, 2011). Many 

smokers intending to quit take help of pharmacotherapy as well as patient counselling but 

smokers using these approaches have shown a high rate of an eventual relapse (Bell & 

Keane, 2012).  

The latest addition to the existing tools for smoking cessation and abstinence is electronic 

cigarettes (e-cigs). Launched in China in 2003, e-cigs are hand-held battery-powered 

nicotine delivery devices which enable users to inhale doses of vaporized nicotine 

(Barbeau, Burda, & Siegel, 2013). A basic model of an e-cig consist of a mouthpiece 

comprising of a liquid-filled cartridge mainly filled with variable concentration of nicotine, 

concentrated flavors, and a humectant substance such as  propylene glycol, vegetable 

glycerin or polyethylene glycol (Besaratinia & Tommasi, 2014). An atomizer equipped with 

an electronic controller, sensor, and battery powered heater converts the liquid inside the 

cartridge into vapor that mimics the cigarette smoke, with a colored LED simulating a 

burning cigarette tip. Used e-cig cartridges can be replaced or refilled with a new cartridge, 

which is readily available in any e-cig store (Besaratinia & Tommasi, 2014). Since no 

tobacco is burned, inhaling nicotine via e-cigs provides a potentially safer alternative to 

smoking regular cigarette since it eliminates the harmful tars and carbon monoxide 

(Dawkins, Turner, Hasna, & Soar, 2012). E-cigs therefore are often perceived to help in 

cigarette smoking cessation and reduction (Dawkins et al., 2012). It also reduces the 

problems of second hand and third hand smoke. (Barbeau et al., 2013; Siegel et al., 2011; 

Zhu et al., 2013).  
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Rise in the use of e-cigs and related effects 

 

As a novel nicotine delivery system, e-cig are rapidly gaining acceptance in the US and 

many parts of the world. Currently, the global e-cig market is worth $6 billion and in the US 

alone, the estimated e-cig retail sales approached $2 billion at the end of 2013, and is 

estimated to rise to $10 billion by 2017 (Herzog, 2013). It is anticipated that e-cig sales will 

surpass that of conventional tobacco cigarettes by 2023 (Herzog, 2013). According to a 

study by the Centers for Disease Control and Prevention (CDC), nearly 6% of all U.S. adults 

have used e-cig, and approximately 21% of American adult smokers (i.e., an estimated 

population of 45 millions) have tried e-cig in the past (CDC morbidity and mortality 

report.2013). The Tobacco Vapor Electronic Cigarette Association claims that around 4 

million Americans are e-cig users (TVECA, 2013). This increasing trend for e-cig use also 

extends to minors as the number of U.S. middle and high school students who tried e-cig 

more than doubled between 2011 and 2012, rising from 4.7% to 10% (CDC morbidity and 

mortality report.2013). In 2012, around 1.78 million middle and high school students 

nationwide admitted to using e-cig. Along with that, 76.3% of youth who used e-cig within 

the past 30 days also smoked regular tobacco cigarettes in the same period, giving rise to 

dual use (CDC morbidity and mortality report.2013).  

Although e-cigs has been portrayed as a less harmful substitute for smokers who are 

unable to quit, the counter-argument to the use of e-cig is that it may cause nicotine 

dependence in smokers and long term use may cause health complications (Dutra & Glantz, 

2014; Tomar, 2007). Despite the fact that the e-cigs deliver fewer amounts of nicotine 

vapors than tobacco cigarettes, they nevertheless have showed long term nicotine 
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dependency in e-cig users (Tomar, 2007). Also, recent studies done on chemical analysis of 

e-cig vapor/liquid has shown the presence of toxins and carcinogens, generally at lower 

levels, in various e-cig products (Goniewicz, Kuma, Gawron, Knysak, & Kosmider, 2013; 

Kim & Shin, 2013; McAuley, Hopke, Zhao, & Babaian, 2012).  

 

The rising popularity of e-cig among minors and young adults is particularly concerning 

because these products may serve as a ‘gateway’ to using conventional tobacco products. In 

other words, e-cigs use has potential unintended consequences, such as becoming “starter 

products” for non-smokers, especially young adults, leading to increased smoking initiation 

and derailing the potential for ultimate smoking abstinence (Pepper et al., 2013; Riker, Lee, 

Darville, & Hahn, 2012). Because the vast majority of smokers pick up the habit as 

teenagers (Pearson, Richardson, Niaura, Vallone, & Abrams, 2012), the excessive use of e-

cig by teenagers and young adults is a critical concern because it may ultimately lead to 

long lasting smoking habits.  

The use of e-cig also draws attention to the increasing trend of dual use claiming that 

smokers may use e-cig to temporarily alleviate their craving for tobacco cigarettes, 

especially in settings where smoking is prohibited. Under such assumption, dual users may 

take advantage of e-cig as a ‘quick fix’, and maintain their smoking status without feeling 

the need to quit smoking (Pepper et al., 2013). 
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Regulatory Perspective to the use of e-cig 

 

The WHO stated that the efficacy of e-cig in aiding smoking cessation had not been 

demonstrated scientifically, and recommended that consumers should be advised not to 

use e-cig until the recognized regulatory bodies have found them safe and effective 

(WHO.2012). Since then, several countries such as Australia and Canada have restricted the 

sale of e-cigs until pending review by their regulatory agencies (WHO.2012). At present, the 

FDA is formulating regulations for the sale and marketing of e-cig as a smoking cessation 

product. However, the nature of the regulation procedure is yet to be determined as there 

is a lack of research evidence on the health impact of using e-cigs (WHO.2012; Henningfield 

& Zaatari, 2010).  

In the US, with the enactment of the Family Smoking Prevention and Tobacco Control Act 

(FSPTCA) in 2009, the FDA was granted authority to regulate the manufacture, marketing, 

and distribution of tobacco products to protect the public health and to reduce tobacco use 

by minors (Family smoking prevention and tobacco control act (FSPTCA).2014). Within the 

framework of the FSPTCA, the FDA and the National Institutes of Health (NIH) have formed 

an interagency partnership to foster research relevant to tobacco regulatory science, and 

identified multiple research opportunities, including e-cig initiation, use (including 

transition to other tobacco products and multiple use), perceptions, dependence, and 

toxicity (Tobacco regulatory science program (TRSP).2014). 

 

The ongoing and future research on these topics is expected to provide empirical evidence 

that can be used to inform the general public, scientific community, and regulatory 
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authorities of the health risks and benefits associated with e-cig use. Not only will this 

information help generate further interests for scientists in the field of tobacco regulatory 

research, but it will also assist the regulatory agencies in making scientifically based 

decisions on the development and evaluation of regulations on novel tobacco products 

such as e-cigs to ensure safety of public health.  
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Tobacco use is a global phenomenon, affecting an estimated 1.2 billion people, which poses 

substantial health burden and costs. With approximately 5 million tobacco-related deaths 

annually, cigarette smoking is the leading cause of preventable premature mortality in the 

world (World health organization.1997). The risk of serious disease diminishes rapidly 

after quitting and permanent abstinence is known to reduce the risk of lung cancer, heart 

disease, chronic lung disease, stroke, and stroke (Health consequence of smoking: US 

surgeon general report.2014; Lightwood & Glantz, 1997). 

Existing treatments for smoking cessation includes various methods, from simple medical 

advice to pharmacotherapy. However, the potential addictive nature of nicotine creates a 

huge obstacle for those who desire to quit smoking. It has been shown that approximately 

80% of smokers who attempt to quit on their own relapse within the first month of 

abstinence and only about 3-5% remain abstinent at 6 months (Hughes, Keely, & Naud, 

2004).  

 

Smokers often take help of drug therapies to help them quit their smoking habit. The latest 

treating tobacco use and dependency guidelines of US Department of Health and Human 

Services (How tobacco smoke causes disease.2010)categorizes pharmacotherapy for 

treatment of tobacco dependence into first-line (nicotine replacement therapy [NRT], 

bupropion, and varenicline) and second-line medications (include nortriptyline and 

clonidine). Most of the first line medications have established efficacy profiles but the FDA 

has not approved the second line medications for tobacco dependence treatment indication 

and there are concerns about their potential side effects (Hays, Ebbert, & Sood, 2009a).  
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NRT is the most common existing medication used to assist tobacco cessation. It acts by 

partially replacing the nicotine formerly obtained from tobacco smoking and aids smoking 

cessation by weakening the reinforcing effects of nicotine delivered via tobacco, and 

therefore reducing the severity of withdrawal symptoms and cravings (Gross & Stitzer, 

1989). Despite the first line treatment, NRT does not completely eliminate all symptoms of 

withdrawal because the delivery system does not reproduce the rapid and high levels of 

nicotine achieved through regular tobacco use. (Benowitz, 1991). Differences in 

formulations (lozenge, gum, patch, nasal spray, and inhaler) may provide some relief to the 

withdrawal symptoms or urges to smoke, but there is little direct evidence that one 

nicotine product is more effective than another (Benowitz, 1991). In general, NRT is 

considered to be safe for most patients, with a relatively low rate of discontinuation due to 

adverse events (Tonnesen & Mikkelsen, 2000).  

 

Bupropion hydrochloride (brand names: Zyban, Wellbutrin), another first line smoking 

cessation drug is found to be effective as a smoking-cessation aid, with sustained-release 

(SR) oral formulations as well as immediate release. The mode of action of bupropion in 

smoking cessation is not clearly explained but inhibition of neuronal reuptake of dopamine 

and a weak nAChR antagonist effect are thought to contribute to the reported reduction in 

the severity of nicotine cravings and withdrawal symptoms (Jorenby, 2002). Pooled 

analyses of studies with bupropion generally show quit-rates similar to those observed 

with NRT (Hughes, Stead, Hartmann-Boyce, Cahill, & Lancaster, 2014). However, bupropion 

have been commonly associated with insomnia and dry mouth (Hughes et al., 2014).  
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Varenicline (brand names: Chantix/Champix1), launched in 2006, became the first new 

prescription drug for smoking cessation in 10 years. Varenicline acts by dual effects: partial 

stimulation of nAChRs, without creating the full effect of nicotine (agonist action), and 

blocking nAChRs, which prevents the nicotine from tobacco from reaching them 

(antagonist action) (Tonstad et al., 2006). These effects provide relief from the cravings 

and withdrawal symptoms experienced during smoking cessation (Tonstad et al., 2006).  

Varenicline is generally well tolerated, however it is still associated with adverse effects 

including nausea, insomnia, gastrointestinal upsets and headache (Hughes et al., 2014). The 

prescribing information for varenicline also carries a black-box warning highlighting an 

increased risk of psychiatric symptoms and suicidal ideation in patients reporting any 

history of psychiatric illness (Tonstad et al., 2006). 

 

Both nortryptiline and clonidine are second-line medications for treatment of tobacco 

dependence but they do not have approval from the US FDA for this indication, as there are 

concerns about potential side effects (Fiore, 2000).  Combinations of smoking-cessation 

medications such as nicotine patch plus a more rapid release NRT such as gum, lozenge or 

spray, or bupropion plus NRT, have shown to increase efficacy in smoking cessation 

compared to monotherapy (Fiore, 2000).  

 

The use of e-cigs, also referred to as vaping, is a relatively new phenomenon that is rapidly 

gaining the interest of many long-time tobacco users and health care professionals. E-cigs 

are becoming a preferred alternative for nicotine delivery among many smokers because of 

their realistic look, feel, and taste compared to traditional cigarettes. Furthermore, many 
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cigarette smokers have turned to vaping because e-cigs vendors are marketing their 

product as a cheaper and safer smokeless alternative to traditional cigarettes, and a 

possible smoking cessation tool (Herzog, 2013).  Awareness and vaping of e-cigs has 

increased exponentially in recent years. Data obtained from surveys and smoking reports 

showed that in the US, awareness of e-cigs rose from 40.9–57.9% from 2010 to 2011, with 

e-cigs use rising from 3.3–6.2% over the same time period [King et al. 2013].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Conceptual framework 

 

The substitution of conventional tobacco products by newer e-cigs draws similarity from 

effective patient behavior changes, which are required to help maintain and improve 
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health, reduce disease risks, and control illnesses. Most of the successful health programs 

and interventions are based on an understanding of patient’s health behaviors with respect 

to different contexts. Several different approaches or interventions are currently observed 

to be practiced by health care providers to modify patient behavior. The most commonly 

targeted behaviors are tobacco use, diet and physical activity patterns, alcohol 

consumption, medication adherence, unsafe sexual behavior, and preventive behavior such 

as screening and vaccinations (Ashenden, Silagy, & Weller, 1997; Grol & Grimshaw, 2003). 

 

Literature shows it is highly difficult for patients to completely quit a long-term habit at 

once, such as smoking or alcoholism (Hays, Ebbert, & Sood, 2009b). It is observed that 

counseling patients to completely stop smoking or consuming alcohol does not deter 

patients’ habits and results in withdrawal symptoms and other stressful conditions. 

Clinicians and therapists are observed to offer alternative pharmacotherapies (nicotine 

replacement therapy), substitute but less harmful products or group and individual 

counseling to patients wanting to quit. It is a proven fact that offering these alternatives 

and less harmful products (substitute products) ends up being more successful in reaching 

eventual abstinence than asking them to completely quit their habit (Ashenden et al., 

1997). Along with offering substitute products, exposing patients to threats and benefits of 

a particular behavior also helps to achieve a health related action (Grol & Grimshaw, 2003).  

In context of the behavior of tobacco use or cigarette smoking, it is an addiction that is 

difficult to break. Smokers trying to quit have to cope simultaneously with the 

psychological and pharmacologic aspects of tobacco dependence (Polosa & Benowitz, 
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2011). Along with the pharmacological effects of nicotine which results in symptoms like 

nausea, insomnia, fatigue, restlessness and increased cardiovascular rhythm, it is crucial to 

note the importance of behavioral aspects of tobacco dependence. The rising popularity of 

e-cigs can be attributed to their ability to deal with both the pharmacological (i.e. nicotine) 

and the behavioral component (similar shape, mechanism and pleasure) of smoking 

addiction. Most of the drug therapies do not deal with the behavioral aspects of smoking 

cigarettes. E-cigs, on the other hand, provide simulation of smoking behavior with its 

physical similarity with a conventional cigarette and the feeling of inhaling and exhaling 

smoke, which are important determinants of its effectiveness in reducing or substituting 

cigarette smoking. 

Along with pacifying the withdrawal symptoms of nicotine, the action of using an e-cig is 

also perceived to protect the smokers from getting smoking-related diseases and overcome 

other negative effects such as social unacceptability among family and friends. The 

potential benefit of an e-cig in addition to lower barriers associated with the use of e-cigs 

which include experiencing the same pleasure as tobacco cigarette, habitual of inhaling 

smoke, price-difference between e-cig and regular cigarette, and handling and carrying 

issues results in high acceptability of e-cigs among the youth and adult smoking population.  

The high awareness of e-cig via media advertising, observing other people using it and easy 

accessibility and availability of e-cig also contributes to its successful initiation among 

different sections of the population.  

 

Impact on public health 
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Despite the fact that the e-cigs deliver fewer amounts of nicotine vapors than tobacco 

cigarettes, they nevertheless have showed long term dependency in e-cig users (Tomar, 

2007). To counter this, the proponents of e-cigs claim that use of e-cigs is safer because 

tobacco is not combusted and there is no inhalation of the toxins found in cigarette smoke 

(Barbeau et al., 2013). However, the FDA has reported that e-cig cartridges and solutions 

contain nitrosamines, di-ethylene glycol, and other contaminants potentially harmful to 

humans (Westenberger, 2009). Based on this, the FDA wants the sale of e-cigs to be 

prohibited or regulated as dangerous nicotine delivery systems that should comply with 

the safety standards of the Federal Food Drug and Cosmetic Act (FDCA.2013). 

Studies conducted by Foulds et al. (Foulds, Veldheer, & Berg, 2011) believe that more 

research needs to be conducted to determine the safety and efficacy of e-cigs as a smoking 

cessation tool. However, they also stated that individuals who have successfully quit 

smoking in favor of vaping should continue to use e-cigs as a healthier alternative to 

conventional cigarettes. E-cigs could play an important role in the future of smoking 

cessation, but their use is currently under scrutiny by a complicated legal and political 

issues. It is evident that there is a need to conduct more research on the long-term effect 

and net benefits of e-cigs, to be able to formulate the control measures which will 

streamline the legal and political ramifications surrounding these products.  

The potential health hazards of nicotine addiction from other smokeless tobacco products 

have been previously published by the American Heart Association and include 

hemodynamic effects, endothelial dysfunction, thrombogenesis, systemic inflammation, 

and other metabolic effects (Piano et al., 2010). Because of that, there is a concern that 
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increased availability of e-cigs could increase worldwide nicotine dependence, especially 

among the young as they are enticed by the various flavor options e-cigs have to offer. Also, 

since vaping does not produce smoke from burning tobacco, the opponents of e-cigs fear 

that traditional smokers will substitute vaping for smoking in settings where smoking is 

not permitted without any real intention of quitting conventional cigarettes. Furthermore, 

vaping in public places could possibly undermine or weaken current antismoking 

regulations.  

In order to face these challenges, it is very important to become more familiar with the 

available scientific evidence- based literature concerning e-cig and vaping. Currently, the 

literature is limited, but it is growing fast and more studies are getting published in the 

areas of e-cig based surveys studies, chemical analysis of e-cigarette cartridges, nicotine 

content, delivery, and clinical and physiological studies, and evaluating long term effect of 

vaping. We attempt to comprehensively review the literature published till date on 

aforementioned areas and try to address the gap in the current literature. The studies 

discussed are categorized on the basis of their study designs including survey design, 

experimental, cohort and physiological studies.  

Survey studies 

 

The biggest survey study done on e-cig users was done by Adkison et al, to examine the e-

cig related awareness, use, and product-associated beliefs among current and former 

cigarette smokers in the U.S., Canada, Australia, and the UK (Adkison et al., 2013). The 

survey was conducted via telephonic interviews from July 2010 to June 2011and the data 

were analyzed to explore changes in smoking behavior between e-cig users and non-users. 
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Results indicated that e-cig awareness ranged from 73% in the U.S. to 20% in Australia. 

Among those aware, 16% had tried e-cigs (7.6% of the total sample), and among those who 

had tried e-cigs, 39% (2.9% of the sample) were current users. Across countries, awareness 

of these relatively new products was higher among younger, non-minority populations 

with higher incomes. Trial and use of e-cigs was associated with smoking status and 

frequency of smoking, with nondaily smokers being the most likely to try e-cigs, although 

there were few non-daily smokers in the sample. Current use was associated with a greater 

reduction in cigarettes per day over time, compared to non-e-cig users (among cohort 

participants, where data were available); however, users were not more likely to quit 

smoking than non-users. 

 

Another four country survey conducted by Etter et al in France, Belgium, Switzerland and 

Canada reported the usage patterns of e-cigs, reasons for use, and users' opinions of these 

products (Etter, 2010). The results of the study suggested that e-cigs were are mainly 

marketed to current smokers either for enjoyment or for use in smoke-free places, and 

most people who bought these products were current and former smokers, who used e-

cigs to help quit smoking, just as they would use NRT. The survey also showed that e-cigs 

were used quite intensively by almost all respondents daily and the number puffs per day 

was substantial. The studied showed that the users reported more positive than negative 

effects with e-cigs and many reported perceived positive effects on the respiratory system 

(breathing better, coughing less), compared to regular cigarette smoking. The study also 

reported that many respondents reported that the e-cigs helped them quit smoking, and 

several compared it favorably with either nicotine patch or bupropion. The respondents 
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also reported that e-cigs relieved craving and withdrawal, which was an added benefit over 

nicotine patches. It was also reported that dry mouth and throat was a frequent adverse 

effect of the e-cigs.  

 

A longitudinal survey study done by Etter and Bullen reported the change over time in the 

behavior of e-cig users (Etter & Bullen, 2014). Data were collected at the baseline and after 

12 months. The study reported information on the natural behavior of an international 

cohort of vapers over 12 months outside clinical settings or efficacy trials. The results 

reported that most of the e-cig users were former smokers, who used e-cigs much like 

nicotine medications, to assist quitting, but with a longer duration of use. Among e-cig 

users, a low proportion of former smokers and recent quitters relapsed to smoking. Dual 

users of e-cigs and conventional cigarettes were shown to reduce their cigarette 

consumption after they started to vape, and about half had stopped smoking at 1-year 

follow-up.  

 

Another survey study conducted by Pearson et al, addressed the knowledge gap by using 

cross-sectional data from 2 separate surveys conducted in 2010, exclusively on the US 

population of e-cig users to estimate e-cig awareness, use, and harm perceptions in the 

adult US population (Pearson et al., 2012). The first survey was a nationally representative 

survey (Knowledge Networks’ Knowledge Panel) and the second one was from the follow-

up of a large cohort of current smokers and recent former smokers (Legacy Longitudinal 

Smoker Cohort (LLSC).  The study reported that national estimates of e-cigs ever-use 

prevalence was 11.4% for smokers, 2.0% for former smokers, and 0.8% for never smokers. 
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It also reported that roughly 5 million smokers and more than 1 million former and never 

smokers reported to have used e-cigs. Ever use was mostly concentrated among current 

smokers, young adults, and non-Hispanic Whites. It was also indicated that the use was 

popular among those with a college degree. Current e-cig use was most common among 

current smokers (4.1%) and former smokers (0.5%). 

 

A face-to-face survey was conducted by Foulds et al on experienced e-cig users attending a 

meeting for e-cig aficionados (e-cig experts), described the e-cig products they used and 

discussed the public health issues raised by these products and implications for clinicians 

(Foulds et al., 2011). The results of this study were mostly consistent with previous online 

or e-mail based surveys of e-cig users and found out that a high proportion had completely 

replaced cigarette smoking with e-cig use. Among 3000 ever users of e-cigs, 77% used e-

cigs to quit smoking or avoid relapsing and 20% stated that they used e-cigs to reduce 

tobacco consumption with no intention of quitting smoking. Most of the ex-smokers in that 

study (79%) feared that they might relapse to smoking if they stopped using the e-cig. 

 

A more recent 1 year longitudinal e-cig analysis was conducted by Grana et al on a national 

sample of current US smokers to determine whether e-cig use predicted successful quitting 

or reduced cigarette consumption (Grana, Popova, & Ling, 2014). The participants were 

current smokers recruited from the Knowledge Networks probability-based web enabled 

panel who completed baseline (November 2011) and follow-up (November 2012) surveys. 

The study reported that significantly more women, younger adults, and individuals with 

less education used e-cigs. At baseline, a greater proportion of e-cig users reported 
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smoking their first cigarette less than 30 minutes after waking compared with non-users. 

Also, baseline e-cig use was not shown to be significantly associated with greater intention 

to quit smoking. E-cig use at baseline did not significantly predict quitting 1 year later. A 

second model including intent, consumption, and dependence covariates found that 

intention to quit and cigarettes smoked per day significantly predicted quit status while 

past 30-day e-cigarette use did not. Among participants who reported smoking at both 

baseline and follow-up, e-cigarette use at baseline was not associated with a change in 

cigarette consumption, controlling for baseline cigarette consumption. 

 

Siegel et al reported the results of a survey conducted using a non-convenience sampling 

frame of all fırst-time purchasers of a particular brand of e-cigs (Siegel et al., 2011). The 

survey was done to determine the effectiveness of e-cigs for smoking cessation. The results 

of this study showed a 6-month point prevalence of smoking abstinence among the current 

e-cig users as 31.0%. Respondents who were not smoking at the 6-month point, or past e-

cig users, around one-third of them were reported as nicotine-free. Around 67% of 

respondents reported a reduction in the number of cigarettes they smoked and around 

49% of respondents reported abstinence from smoking.  

 

Dutra et al used the National Youth Tobacco Survey, which recently started to capture the 

information related to e-cig use among the youth population, to further examine the 

relationship between e-cig use and conventional cigarette smoking and smoking cessation 

among US adolescents (Dutra & Glantz, 2014). The data analysis showed that dual use of e-

cigarettes and conventional cigarettes was high among adolescents and increasing rapidly. 
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Adolescents who had ever used a cigarette (not even one puff) and used e-cigs, were more 

likely to report having smoked at least 100 cigarettes and to be current smokers than 

adolescents who never used e-cig. Thus, it showed that the e-cig users were becoming 

heavier smokers and less likely to stop smoking cigarettes. These results cast a serious 

doubt that e-cigs are effective as smoking cessation aids.  

 

Similar to Dutra and his colleagues, Lee et al used a nationalized database in Korea to 

assess the prevalence of e-cig use as well as the relationship between e-cigarette use and 

current cigarette smoking, cigarettes per day, attempts to quit conventional cigarettes, and 

stopping smoking cigarettes (Lee, Grana, & Glantz, 2014). The findings of this study 

reported a high dual use of cigarettes and e-cigs, and that e-cigs were not being used as a 

substitute for cigarettes among Korean adolescents. Around 9.4% of Korean adolescents 

were found to have ever tried e-cigs and 4.7% were current users. Furthermore, a 

significant association between current e-cig use and higher levels of cigarette 

consumption was found, compared to ever and never e-cig user. Tenth graders had the 

highest e-cig use and 12th graders had the highest conventional cigarette use. The study 

also reported that among ever e-cig users, around 85% were dual users. Also, among 

current e-cig users, more than 75% were dual users.  

 

Studying the willingness to use and the gateway effect of e-cigs, Pepper et al conducted a 

study to understand how male adolescents would respond to e-cigs (Pepper et al., 2013). 

The study surveyed a national sample of males ages 11-19 to explore their awareness of e 

cigarettes and their willingness to try them, along with the proportion of population 
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showing dual use. The sample population consisted of parents with sons’ ages 11-17 years 

and male adolescents of ages 18-19 years. The results showed that around two thirds were 

aware of e-cigs, out of which older adolescents were more likely to be aware of e cigarettes 

than younger adolescents, while Hispanic adolescents were less likely to be aware 

compared to their non-Hispanic counterparts. The results also showed that nearly 1 in 5 

adolescent males were willing to try either a plain or flavored e cigarette. After controlling 

for significant correlates, the odds of a smoker being willing to try an e cigarette were 10 

times the odds of a nonsmoker.  

 

A large cross-sectional survey of a representative sample of the English population 

conducted by Brown et al used data from an ongoing national surveillance program (the 

Smoking Toolkit Study) which has been tracking the use of e-cigs as a reported aid to 

cessation among the general population in England since July 2009 (Brown, Beard, Kotz, 

Michie, & West, 2014). The study aimed to address the question of how effective e-cig were 

compared with NRT bought over-the-counter and unaided quitting in the general 

population of smokers who were attempting to stop. The primary outcome was self-

reported abstinence up to the time of the survey, adjusted for potential confounders 

including nicotine dependence. The results showed that the in the study population (5863 

smokers), 7.9% had used e-cigarettes, 32.8% had used NRT bought over-the-counter and 

59.3% had used no aid to cessation. Quitting method did not differ by sex or the number of 

quit attempts in the past year but was associated with age, social grade, time since the quit 

attempt started, CPD, smoking less than one CPD, the measures of dependence (time with 

and strength of urges and HSI) and whether the attempt had begun abruptly. Further 
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comparisons showed that those who used either e-cigs or no aid were younger than those 

using NRT over-the-counter, and that those who used NRT over-the-counter or no aid were 

more likely to hold a lower social grade than those using e-cigarettes. E-cig users smoked 

more cigarettes, and were more dependent by the strength of urges measure and heaviness 

of smoking index (HIS), than those using no aid.  

 

A more recent study done on e-cig population in Spain by Martinez et al aimed to estimate 

the prevalence and analyze the correlates of current and ever use of e-cigarettes, including 

purchase location and satisfaction with its use, in a sample of the general population of the 

city of Barcelona in 2013 and 2014 (Martinez-Sanchez et al., 2014). The study utilized data 

from a survey of representative sample of the adult (n=1245) and asked questions on 

current use, ever use and experimentation with e-cigs. The results showed that the 

prevalence of ever e-cigarette use was 6.5%, with the population distribution as mean age 

of 45.1 years, 56.2% men and 58.3% with intermediate educational level. In total, 75% of e-

cig users were current cigarette smokers (dual use), 22.9% were former smokers and 2.1% 

were never-smokers at the time of the interview. The prevalence of ever e-cig use was 

higher among men (8%), younger people (≤44 years old, 13.1%) and people with 

intermediate educational level (9.8%). There was a statistically significant association 

between ever e-cigarette use and current smoking (OR=54.57) and the highest prevalence 

(46.4%) of ever e-cig use was among current smokers with a high cigarette dependence 

score. 
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King et al from the National Center for Chronic Disease Prevention and Health Promotion at 

the CDC analyzed data from the 2010 and 2011 “Health Styles” surveys, a consumer panel 

survey, to determine estimates of the national prevalence and socio-demographic 

correlates of awareness and ever-use of e-cigs among U.S. adults (King, Alam, Promoff, 

Arrazola, & Dube, 2013). The survey results showed that the awareness and use of e-cigs 

were increasing rapidly. Approximately 6 in 10 adults were found to be aware of e-cigs in 

2011 compared with 4 in 10 adults in 2010. Moreover, in 2011, 6.2% of all adults and 

21.2% of current smokers had ever used e-cigs, representing an approximate doubling of 

2010 estimates. Differences in awareness and use of e-cigs were observed across 

subpopulations such as adults <65 years of age, non-Hispanic Whites, and current and 

former smokers were most aware of e-cigs. Current smokers were significantly higher 

users of e-cigs than non-smokers.  

 

Experimental studies 

 

Since the launch of the e-cig, there have been couple of randomized controlled trials 

performed on the e-cig users. The randomized controlled trial conducted by Bullen et al 

from 2011 till 2013 in New Zealand, aimed to assess whether nicotine e-cigs were more 

effective for smoking cessation than nicotine patches, and included a blind comparison 

with e-cigs containing no nicotine (placebo e-cig) (Bullen et al., 2013). The results showed a 

significant reduction of the mean cigarette consumption by two cigarettes per day more in 

the nicotine e-cigs group than the patches group (P = 0.002). It was also observed that 57% 

of the e-cigs group reduced daily cigarettes by at least half at 6 months than in the nicotine 

patches group(41%; P = 0.0002) and in the placebo e-cig group (45%; P = 0.08). The results 
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also showed an abstinence at 6 months after quit day of 7.3% in the nicotine e-cig group, of 

5.8% in the nicotine patches group (5.8%), and of 4.1% in the placebo e-cig group. 

Moreover, time to relapse in the nicotine e-cig group was observed to be 35 days, more 

than twice as long as in the patches group (14 days) or placebo e-cigarettes group (12 

days). 

 

The ECLAT trial (Efficiency and safety of an electronic cigarette) was a prospective 12-

month, double-blind, randomized controlled trial conducted by Caponnetto and his 

colleagues in Italy, during the period June 2010– February 2011 (Caponnetto et al., 2013). 

It was designed to assess the efficacy and safety of e-cigs loaded with different strengths of 

nicotine (7.2 mg, 5.4 mg and no nicotine cartridges). The results of this study showed a 

decline in cigarette per day used in all three groups, with no consistent differences among 

study groups. Smoking reduction was reported documented in 22.3% and 10.3% at Weeks 

12 and 52, respectively. Complete abstinence from tobacco smoking was reported as 11%, 

17% and 4% in the three arms respectively, at week 12 and 13%, 9% and 4% in the three 

arms respectively at week 52 (P= 0.001 versus baseline). 

 

In another smaller scale trial in terms of participants, Dawkins et al chose 86 e-cig naive 

smokers and randomly allocated them to either 18 mg nicotine e-cig (nicotine), 0 mg e-cig 

(placebo) or just hold the e-cig (just hold) groups (Dawkins et al., 2012). The study 

reported that desire to smoke declined over time for both nicotine and placebo groups 

relative to the just hold group. After using the e-cig, the mean desire to smoke score 
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significantly changed from 4.5 (at baseline) to 2.5, 20 min after use (P=0.05). The difference 

was found to be statistically significant for males and females from baseline to 20 minutes. 

 

Cohort studies 

 

Polosa et al conducted a proof-of-concept study to monitor changes in the smoking habits 

of a group of regular smokers in Italy, focusing on smoking reduction and smoking 

abstinence (Polosa et al., 2011). Eligible participants were followed up prospectively for 6 

months. The study reported that in 13 of the total 40 (32.5%) participants, the use of 

cigarette per day was reduced by 50% at the end of the study (P= 0.001). A reduction of 

80% in the number of cigarettes smoked was observed in 5 of the 40 participants (12.5%, 

P= 0.043). 

 

A similar proof-of-concept study was conducted by Caponnetto et al to monitor 

modifications in the smoking habits of a group of regular smokers with schizophrenia 

experimenting a popular brand of e-cigs (Caponnetto, Auditore, Russo, Cappello, & Polosa, 

2013). The study participants were followed up prospectively for 12 months. The results 

showed a reduction of 50% in the number of cigarette per day in 7 of the14 participants 

and the median value of 30 cigarettes per day decreased significantly to 15 cigarettes per 

day (P =0.018). Additionally, sustained smoking abstinence at week 52 was observed in 2 

of the 14 (14.3%) participants. 
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Farsalinos et al conducted a study to examine the profile and e-cig use patterns in a specific 

group of past cigarette smokers who managed to completely substitute smoking with e-cig 

use without using any other aid (Farsalinos, Romagna, Tsiapras, Kyrzopoulos, & Voudris, 

2013). The study focused on evaluating nicotine levels used, reported side effects and 

benefits, and the dependency potential of e-cigs compared with tobacco cigarettes. The 

study reported that a significant proportion (42%) of the participants quit smoking during 

the first month of using e-cigs.  Most participants reported increasing the nicotine 

concentration in their e-cigs in order to achieve complete substitution of smoking.  More 

than 80% of e-cig users were reported to quit smoking cigarettes by using nicotine levels 

higher than 15 mg/mL.  

 

Polosa et al investigated long-term efficacy of the e-cigs as a smoking-cessation tool in a 

cohort of current smokers followed up to 24 months (Polosa et al., 2014). The prospective 

observational study evaluated smoking reduction and abstinence by measuring >50 % 

reduction in the number of cig/day from baseline, >80 % reduction in the number of 

cig/day from baseline, and complete abstinence from smoking. The outcomes were 

measured at the baseline, 6 months, 18 months and 24 months. The results showed a 

significant overall 80 % reduction in median cig/day use from 25 to 4 cigarette by the end 

of the study. Sustained 50 % reduction in the number of cig/day at 24 months was seen in 

27.5 % subjects. There were 12.5 % quitters by the end of the study. Overall, combined 

sustained 50 % reduction and smoking abstinence was seen in 40 % participants at 24 

months, with a median of 24.5 cig/day decreasing significantly to 4 cig/day (p<0.001). 
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Another study conducted by Rigotti et al described the prevalence of current e-cig use 

among adults who were admitted to nine acute-care hospitals in five geographically 

dispersed U.S. cities (Birmingham, AL; Boston, MA; Kansas City, KS; New York, NY; and 

Portland, OR) over 3.5 years, from July 2010 to December 2013 (Rigotti et al., 2014). The 

study evaluated the association between self-report of having used one or more e-cigs in 

the 30 days before the hospital admission and covariates including enrollment date, age, 

sex, race/ethnicity, marital status, educational attainment, health insurance, type of 

admission (emergency room vs. other), number of cigarettes per day before admission, and 

whether the smoker planned to quit smoking after discharge. The results showed that 

overall 14% of all patients (n=4660) admitted between July 2010 and December 2013 

reported having used an e-cig in the 30 days prior to their hospital admission. Out of all the 

covariates, e-cig use significantly varied by the patient characteristics of age, 

race/ethnicity, education and cigarettes smoked per day. The results also showed that the 

prevalence of e-cig use significantly increased over time, from 1.1% in 2010, to 10.3% in 

2011, to 10.2% in 2012, and 18.4% in 2013 (p < .0001). Younger smokers (<45 years), 

heavier smokers (≥10 cigarettes/day), and those with more education (high school diploma 

or more) were more likely to have used an e-cigarette in the 30 days before hospital 

admission, controlling for other factors.  

 

Physiological studies 

 

Vansickel et al conducted a study to characterize e-cig users' nicotine and CO exposure, 

cardiovascular response, and ratings of nicotine abstinence symptom suppression 
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(Vansickel, Cobb, Weaver, & Eissenberg, 2010). The study involved 32 tobacco cigarette 

smokers and compared the effect of two e-cig brands with own brand cigarettes and 

placebo smoking (i.e., puffing on an unlit cigarette). The results of this acute study 

suggested that two 10-puff bouts with the e-cigs exposed users to no significantly 

measurable nicotine or CO and did not increase heart rate. The results also showed that 

neither of the e-cig exposed users to measurable levels of nicotine or CO, although both 

suppressed nicotine/tobacco abstinence symptom ratings.  

 

Another study looking at the cardiovascular effects was conducted by Eissenberg et al and 

it examined how two brands of e-cigs influenced plasma nicotine levels, heart rate and 

cigarette craving in cigarette smokers, and compared these effects to those produced by 

smokers’ usual brand of cigarettes (Eissenberg, 2010). The study recruited 16 naive e-cig 

users who used either their own brand cigarettes, sham smoking (puffing an unlit 

cigarette), or two different brands of e-cigs. The results of the study showed that relative to 

tobacco cigarette, 10 puffs from either of the branded e-cigs delivered little to no nicotine 

and suppressed craving less effectively.  

 

Vansickel et al conducted a second study to investigate an initial abuse liability assessment 

of an e-cig brand current regular cigarette smokers (Vansickel, Weaver, & Eissenberg, 

2012). To accomplish this, the nicotine delivery profile, subjective and cardiovascular 

effects of an e-cig were examined following puffs of regular cigarettes and bouts of the e-

cigs. Their plasma nicotine concentration, heart rate and subjective effects were measured. 

It was observed that tobacco abstinence symptom suppression and increased product 
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acceptability ratings were associated with e-cig. In terms of heart rate, there was an 

insignificant increase observed from a pre-administration average of 67.5 beats per minute 

to 75 beats per minute, 5 minutes after the first e-cig bout. No effect of e-cig administration 

was observed for systolic or diastolic pressure.  

 

Flouris et al conducted a study to assess the acute impact of active and passive e-cigarette 

smoking on serum cotinine and lung function, as compared to active and passive tobacco 

cigarette smoking (Flouris et al., 2012). Fifteen current and fifteen never-smokers were 

asked to undergo a control session, an active tobacco cigarette smoking session and an 

active e-cig smoking session and their serum cotinine, lung function, exhaled carbon 

monoxide(CO)and nitric oxide were assessed at the baseline, immediately post and 1 hour 

post exposure of the sessions. The results showed a statistically significant linear 

association between the serum cotinine levels observed immediately after and 1 hour after 

the active tobacco and active e-cig sessions. Further, no statistical difference in the lung 

function data was observed within each individual time point (i.e. baseline, immediately 

post and 1 h post-exposure), in both groups. In the active control group, no significant 

fluctuations were observed in the lung function and serum cotinine concentration. In 

contrast, the lung function and CO levels changed significantly across time during the active 

tobacco session. During the active e-cog session, cotinine was found to be fluctuated 

significantly but no significant effect was observed in lung function and exhaled CO.  

 

Another study to assess the physiological impact of e-cig was conducted by Farsanilos et al 

(Farsalinos, Tsiapras, Kyrzopoulos, Savvopoulou, & Voudris, 2014). They evaluated the 
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effects of e-cig use on cardiac function, more specifically to investigate the acute effects of 

using an e-cig for 7 minutes on hemodynamics parameters and myocardial function, 

compared to the effects of smoking a tobacco cigarette. The study population consisted of 

current smokers who were smoking for at least 5 years and were consuming at least 15 

cigarettes per day and e-cig users who had quit smoking and were using e-cigs for at least 1 

month. The results showed that after-use values of systolic BP, heart rate and pressure rate 

were elevated in the smoker group but not in the e-cig group. In contrast, diastolic BP 

increased almost equally in both groups.  

 

Vardavas et al conducted a study to investigate whether using an e-cigarette for short 

period of time could affect respiratory mechanics, using the experimental vs control group 

study design (Vardavas et al., 2012). The study population was composed of 30 adults 

recruited from a community setting in Athens, Greece. All subjects were current smokers 

with a minimum pack-year index of 5. The results showed that with regards to pulmonary 

oxidative stress, exhaled nitric oxide within the experimental group decreased by 16% 

after the use of an e-cig, whereas it remained unchanged within the control group. 

According to the study, decrease in exhaled nitric oxide results in respiratory impedance 

and respiratory flow resistance (similar to cigarette use). The results also showed that the 

lung airways impedance increased significantly in the experimental group whereas no 

differences were noted among control group participants. After controlling for subject’s 

baseline’s responses, the peripheral flow resistance was found to increase significantly 

after use of the e-cigs. 
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Tzatzarakis, et al published their research in the abstracts of the 49th Congress of the 

European Societies of Toxicology (EUROTOX) (Tzatzarakis, Tsitoglou, & Chorti, 2013). The 

research was conducted to examine the acute and short term impact of active and passive 

tobacco and e-cig smoking on inflammatory markers. Ten smokers and 10 never-smokers 

completed the repeated measures controlled study. Smokers underwent a control session, 

an active tobacco cigarette smoking session, and an active e-cig smoking session. Never-

smokers underwent a control session, a passive tobacco cigarette smoking session, and a 

passive e-cigarette smoking session. Several smoking-related biomarkers including 

Interleukins (IL) 1 alpha, 1 beta, 2, 4, 6, 8, and 10 as well as vascular endothelial growth 

factor, tumour necrosis factor alpha (TNFa), monocyte chemotactic protein-1, and 

epidermal growth factor (EGF) were assessed at baseline, immediately following 

smoking/control, and one hour thereafter. The results showed that neither a brief session 

of active e-cig smoking nor a 1 hour passive e-cig smoking significantly affected the 

assessed inflammatory markers. In contrast, active tobacco cigarette smoking significantly 

increased IL2 and EGF immediately after smoking. Also, passive tobacco cigarette smoking 

increased TNFa immediately after the smoking exposure.  

 

 

 

 

 

 

 

http://www.sciencedirect.com.proxy.library.vcu.edu/science/journal/03784274/221/supp/S
http://www.sciencedirect.com.proxy.library.vcu.edu/science/journal/03784274/221/supp/S
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Gaps in literature  

 

Despite the increasing popularity of e-cigs worldwide, not much research has been done 

regarding the long term effects of e-cigs on the smoking behavior of the current smoking 

population. Most of the literature deals with survey studies, soliciting personal views on 

vaping, studies analyzing potential toxins and contaminants in e-cig cartridges, reports 

profiling nicotine content, delivery, and pharmacokinetics and very few clinical and 

physiological studies investigating the effects of acute vaping. Till today, only one research 

protocol could be found which aimed to evaluate the long-term adherence to e-cigs and the 

long term efficacy of e-cigarettes in reducing and/or quitting traditional cigarette smoking. 

However, the protocol plans to follow up subjects for 5 years and the results will most 

likely not be out before 2018 (Manzoli et al., 2013).  

None of the studies mentioned above have tried to estimate or quantify the long term 

effects of e-cigs in a smoking or a non-smoking population. Most of the studies followed a 

cross-sectional survey design and used a snapshot of e-cig users at one point in time. Some 

studies observed the e-cig users for 6 months or maximum for 12 months to identify the 

effects of cessation. Based on the short term or cross sectional study designs, most of these 

studies suggest that using e-cigs or vaping could be used as a possible harm reduction tool. 

However, to trust e-cigs as a smoking-cessation agent, we need to have more 

comprehensive research evidence to make informed decisions. It is a well-known fact that 

smoking is a long term and a highly dynamic habit. It will be safe to say that if a person who 

is abstinence today, may start using e-cig tomorrow and then switch to regular cigarette in 

future. Keeping that in mind, it is important identify different behavior scenarios to model 
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the long term effects of e-cig in a population. Using the evidence from currently available 

literature, it will be interesting to predict the long term net effects of e-cigs.  

 

Study Objectives 

 

The primary objective of this study was to construct a Discrete Event Simulation system to 

model the behavior and pattern of e-cig use among different smoking groups of the US 

smoking population.  The model was built and validated using the e-cig use behavior 

information available in the published literature and by seeking expert opinion from the 

field of Tobacco Regulatory Health Science. The secondary objective of this study was to 

run the simulation model to estimate the long term prevalence of e-cig use in different 

groups of the US smoking population.  

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

 

 

 

 

Chapter 3 
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Overview 

 

The primary purpose of this study was to develop a simulation model to simulate e-cig use 

behavior pattern of current smokers, former smokers and never smokers for fifteen years. 

We chose to use the technique of Discrete Event Simulation (DES) to model the e-cig use. 

The principles of good research practices for modeling studies outlined by the ISPOR task 

force (Karnon et al., 2012) were followed as closely as possible to build the model. The 

model consisted of current, former and never smokers whose behavior was simulated, 

based on existing data available in published literature.  The model included the population 

attributes and the list of events that occurred over the simulated time. The states or events 

were continuously updated through the model simulation. The uncertainty around the 

literature estimates was accounted by using stochastic simulation over deterministic 

simulation.   
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What is simulation modeling? 

 

The ISPOR task force put together a report for good research practices in modeling studies 

in health care evaluation in 2012 (Karnon et al., 2012). It defined modeling as “a logical 

mathematical framework that permits the integration of facts and values, which in turn link 

these data to outcomes that are of interest to health care decision makers.” A generalized 

version of the definition summarizes simulation modeling as a computerized version of the 

system which is run over time to study the implications of the defined interactions among 

the input parameters (Weinstein et al., 2003). It helps us accurately reflect the randomness 

and interdependence of behavior and outcomes present in reality with available data and 

resources. Using simulation, we can predict the future outcomes by including time related 

events and probability distributions into the modeling framework as they occur in real life 

to obtain accurate estimates (Briggs & Sculpher, 2006; Weinstein et al., 2003).  

 

Simulation Modeling Applications in Healthcare 

 
 
Simulation modelling approaches are now widely used to assess new health care 

technologies, simulate disease or treatment pathways or simulate health behaviors. 

Generally, the modeling is needed to study consequences of any event or intervention, 

beyond the direct application of observed data (Barton, Bryan, & Robinson, 2004). In 

research, simulation modeling generally comprises of mathematical equations and analytic 

methodology that account for events that occur over time (Gold, Siegel, Russell, & 

Weinstein, 1996).  This type of modeling differs from statistical models such as regression 

models by allowing a combination of information from a variety of sources or synthesize 
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data for the purpose of making a decision (Barton et al., 2004). Simulation modeling can 

also be used in conditions where cost and effectiveness parameters are compared beyond 

the data observed in a clinical trial, intermediate clinical end-points are linked to final 

health outcomes, extrapolation of the results obtained in one clinical setting to other, 

making comparisons of alternative competing interventions where direct comparisons 

have not been made in clinical trials or guiding policy decisions in absence of real data 

(Buxton et al., 1997).   

 

As the ISPOR definition mentioned above, simulation models structures are made up of 

logical framework and mathematical equations which uses the best available information 

about the system being studied, the outcomes of interest, and the risks and probabilities 

affecting each action (Stahl, 2008).  Incorporating this information into the model structure 

helps in generating evidence for or against our hypotheses, and help researchers 

understand the nature of the problem under study. We also use simulation models to aid 

our decision making by helping us make decisions under conditions of uncertainty. We can 

use it to evaluate the outcomes of different strategies, to explore the consequences of 

changes to the system and to predict how the behavior of a system with change in time.  

 

Model Selection Process 

 

 

The selection of an appropriate modelling approach is an integral step for the question 

being considered. It is represented as a flowchart in figure 1.  
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Figure 1. Model selection flowchart (Barton et al., 2004) 
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Interaction or no interaction 

The selection of the appropriate model for modeling a health care intervention should be 

made along the lines shown in Figure 1. As mentioned above, the initial consideration is 

whether the individuals in the model may be regarded as independent or not. When 

interaction is not an important issue then the choice is between decision trees, or Markov 

models. Where interaction is a significant issue in modelling, models such as DES are 

required. 

 

Cohort or individual 

The second important aspect in the model selection process the nature of the object that is 

to be modeled and conceptualizing what happens to those objects. The objects can either 

be modeled as a population (cohort or aggregate modeling) or as individuals in the 

population (individual level simulation) (Brennan, Chick, & Davies, 2006). With respect to 

conceptualizations, the problem can be represented as a series of states that the objects can 

be in, or it can be represented as events the objects can experience (Brennan et al., 2006; 

Stahl, 2008).  

 

There are two major concerns with a cohort approach. Firstly, the determination of 

proportion of population at each relevant time point. That proportion is dependent on the 

risk the population is exposed to, and that risk is affected by treatment the population is 

subject to. However in reality, the risk will also depend on patient characteristics, such as 

age, sex, smoking, and other risk factors. Hence, it is important to characterize the 

population and examine these factors individually.  
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Secondly, the transition from one state to another is not random. People who are at higher 

risk, tend to move from better to worse state earlier than the rest. However, it is difficult to 

characterize these patients in terms of features that may be determinants of further risk. If 

the future risk is dependent on the duration of the time spent in the previous state, the 

estimates will be inaccurate given that the arriving populations mix into a single group and 

do not retain any memory of when they became sick (Caro, Moller, & Getsios, 2010). 

 

All the problems listed above in the cohort approach are readily solved by modeling 

individuals instead of the entire population in the aggregate. For each individual, the risk 

can be computed based on their characteristics, the risks can be easily updated over time, 

and can be recalculated based on changing history of an individual. Individual level 

modeling give us the freedom from restriction to analyze population as homogeneous 

groups with equal risks for everyone.  

 

State versus Event 

In a state-transition model, such as Markov models, the system is conceptualized as a series 

of interrelated that the population may be in. These snapshots occur at fixed, discrete time 

points called cycles. Trying to represent conditions with large number of states leads to 

different combinations of all possible outcomes, which may result in inaccuracies.  

 

The most common types of healthcare models that do not involve interaction are decision 

trees and Markov models (Karnon & Brown, 1998).  
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Decision Trees 

The Decision Tree has the simplest structure. All possible patient pathways are shown 

explicitly on decision tree branches, with associated probabilities and outcome measures. If 

the time frame is short and if the nature of patients’ outcome does not differ across 

strategies, a simple decision tree is an appropriate choice. Decision trees are usually 

constructed with a single decision node at the root of the tree, which then grows into a set 

of linked probability branches, one for each alternative. Although decision trees are simpler 

to understand and analyze, there is a limit to the manageable size of a tree. In case of a 

complex problems, such as a situation where the issue of interest is the survival time, using 

a decision tree becomes a cumbersome approach. To avoid an infinite number of branches 

in the tree, it is necessary to consider a different approach to model survival time with a 

different ranges.  

 

Markov Models 

Markov models are increasingly being used in complex healthcare problems. Their main 

advantage is the easy representation of recurrent events, but like decision trees they do not 

allow for interaction between individuals. Also, the transition probability depends only on 

the state in which the patient is at the start of the cycle. This is known as the Markov 

assumption. The Markov assumption does not allow the transition probability to depend 

either on the time a patient has spent in a given state, or the patient’s previous history 

before entering that state (Briggs & Sculpher, 1998). Markov models thus assume that 

patients in a given state can be treated as homogeneous groups and this homogeneity 
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assumption is inherent in Markov models. For any given alternative, the proportion of 

patients in each state can be calculated sequentially for each time cycle over a period of 

simulated time. Costs are then accumulated according to the number of patients in a given 

state in each cycle. Different policies may be tested by changing the costs and transition 

probabilities. 

 

Models that account for interaction between individuals 

 

Discrete Event Simulation 

DES accounts for interaction between individuals. Also, when the outcome depends on the 

history of the patient or the continuous update of patient’s characteristics, models such as 

DES are required. DES works at an individual level and allows full representation of each 

individual’s history and the interaction between specific individuals. It can accommodate a 

more complex structure than Decision Trees and Markov models, and can still remain 

manageable in size.  

 

DES provides the luxury of overcoming the homogeneity assumptions by attaching 

attributes to the individuals within a model. The transition probabilities can be made to 

vary according to these attributes in any way that is desired. Furthermore, attributes can 

be updated while the model is running. Another advantage of DES is that it allows the 

patient to remain in a given state for a variable length of time, unlike the fixed states of 

Markov models. Also, DES uses stochastic models that include probabilistic sensitivity 

analyses to quantify the uncertainties caused due to variability in parameters whereas 
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deterministic models are mathematical models where outcomes are precisely determined 

through known relationships among states and events, without any room for random 

variation. Conducting probabilistic sensitivity analyses in stochastic models also allows 

some amount of generalizability over different geographical and demographic settings.  

In a DES, the experience of individuals is modeled over time in terms of the events that 

occur and the consequences of those events. Many of the limitations and inaccuracies of 

Markov models and decision trees are easily avoided with DES.  

 

Another big advantage of DES over cohort-based models is that they can work relatively 

more efficiently with limited data availability. The quality of model is highly dependent on 

the data which is incorporated into it. In case of limited individual level data availability, a 

DES model provides a great advantage because the inadequacy of the data is not built into 

the structure of the model (Caro et al., 2010). The simulation can be designed to properly 

reflect the problem and carry out exploratory analyses with the limited data and make 

predictions. It can then incorporate additional data when it becomes available (Caro et al., 

2010). In our case, simulation will be useful as long term observational data pertaining to 

e-cig use is not available yet.  It will help us better understand and predict the vaping 

behavior (real or hypothetical) that we are trying to examine.  

 

The differences between Decision Trees, Markov models and DES are outlined in table 1 

below: 

 

 

 

http://www.businessdictionary.com/definition/random-variation.html
http://www.businessdictionary.com/definition/random-variation.html
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Table 1. Main differences between Decision trees, Markov models and DES 

 

 

 

 

 

 

 

 

Features Decision Trees Markov Models Discrete Event Simulation 

Time horizon  Short Short and long Lifetime behavior 

# of events modeled Small  Relatively higher  High number of events 

Memory feature (Different 
risk factors over time) 

No No Accounts for risk changes 

Probabilistic sensitivity 
analysis 

Difficult Difficult Inherent in the model 

Data requirement Not good for limited 
data 

Not good for 
limited data 

Simulate large number of 
subjects with unique 
characteristics 

Accounts for interactions 
between individuals 

No No Yes 

Update of model 
population 

No No Yes 

Computational 
requirements 

Simple (Microsoft 
Excel) 

Simple (Microsoft 
Excel) 

Special software programs 
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Discrete Event Simulation and its components 

 

The working structure of a DES closely replicates the course outlined in figure2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model starts by setting the simulation clock to zero. The initial state is set by the user 

based on the system being modeled and incorporating the baseline characteristics of the 

Initialize 

 Set simulation clock 

 Initialize system state 

 Initialize event list Determine next event 

 Arrival of the entity 

 Occurrence of an event 

Advance clock 

Process event 

 Update system state 

 Update counters 

 Generate future event 

 

 Compute final 

estimates 

 Generate reports 

End run 

Figure 2. Flow diagram of the computation process for a discrete event simulation (Caro et al., 2010). 
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model population. Next step is to list out all the relevant events using the logical and 

mathematical framework of the system. This will drive the flow of the model population 

and decide the change in current and future states of the model. Once the initialization step 

is over and the model is made to run, based on the individual’s characteristics and the way 

it is programmed, it determines which event will the individual will go to next. Accordingly, 

the system jumps to the next event by bringing the individual to that particular state and 

advancing the simulation model clock, which in turn records the time at which the event 

took place. Once the event is processed in the system, the change in states of the individuals 

and the system as a whole is recorded and the individual characteristics are updated. Based 

on the updated characteristics, the future states in the path of the individual is determined. 

This process is repeated until all the individuals are made to go through the entire cycle or 

until the pre-set simulation time period ends. After the simulation has ended, final reports 

are generated showing the estimated outcomes of the simulation.   

 

The fundamental components of the DES technique are described below: 

1) Entities 

A central component of DES is the entity. Entities are the items that flow through the 

simulation, smokers in our case. Smokers have attributes (e.g. age, sex, race, smoking 

history), with each individual having a specific value for each characteristic. These values 

are defined at the start of the simulation and are updated as events take places such as age 

increases, initiating e-cig use, or quit attempts. These updates can happen at particular 

points in time. The model update is decided on the basis of the structure of the problem.  
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2) Events 

The second major element of the simulation is the events that drive the entities. An event 

can be defined as anything that happens during the simulation. Thus, it can be the 

occurrence of a quit attempt, initiation of e-cig, relapse or just aging in the model. Events 

can happen in any logical sequence and even simultaneously. They can recur if that 

happens in reality. Events change the course of individuals’ experience by influencing their 

attributes and occurrence of future events with no restriction on memory. For example, the 

initiating of e-cig can depend on previous use but can also be altered by making a quit 

attempt in future. The rates at which events occur can take any functional form supported 

by the data or assumptions. They can be dependent on any attributes or variables and 

these functions can change over time as appropriate. 

 

3) Time 

The third important component of a DES is time. A simulation clock keeps track of the 

passage of time in the model. This permits the modeler to clearly signal the start and end of 

the simulation and to create internal time periods such as the length of staying in a 

particular state. By making time explicit, a DES allows more flexibility than Markov models 

and Decision trees. Time moves continuously and the units can be minutes, days, months or 

whatever is convenient. However, since the progression of simulation depends on events, 

the simulation clock is advanced to the time when the next event will occur. 
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4) Means of Execution 

The final component is the means to execute the simulation, following a desired logic and 

carrying out all the calculations. The execution begins by formulating the question in detail, 

providing a description of the system that is to be modelled, specifying the details that 

pertain to the condition in question. Following that, the model is designed conceptually in 

the form of an influence diagram. Once the concept has been validated with help from 

relevant experts, data are fit to the model. 

 

5) Actual simulation 

Once the model is coded in software and debugged, the analysis in a DES proceeds by 

specifying the initial system conditions (i.e. starting values for all attributes and variables) 

and simulation settings (e.g. duration, time units, number of replications). The software 

then carries out the simulation by applying the logic to each entity (patient) using random 

numbers to obtain specific values from assigned distributions and determine whether 

probabilistic events occur at a given time to a given patient. Thus, a DES is an individual 

patient, stochastic simulation (Caro et al., 2010).  
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As explained in the overview section of this chapter, we decided to construct a DES model 

to simulate the behavior of e-cig users in the US. The description of the data sources, model 

parametrization, simulation pathway and handling uncertainty is described as follows. 
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The E-cig model  

 

Generating the model population 

To generate the model population, we used publicly available data from the cross-sectional 

National Health Interview Survey (NHIS), a nationally representative multistage household 

survey of the civilian noninstitutionalized population of the United States. The National 

Center for Health Statistics (NCHS) of the Centers for Disease Control and Prevention (CDC) 

has conducted the NHIS annually since the 1950s to monitor the nation's health at both the 

household/family level (e.g., type of living quarters, family size, and total combined family 

income) and the individual level (e.g., various medical/health conditions, risk factors, and 

access to care). The main objective of the NHIS is to monitor the health of the US population 

through the collection and analysis of data on a broad range of health conditions. The 

survey also collects current data on many demographic and socioeconomic characteristics 

(NCHS, 2012). 

The NHIS covers the civilian population residing in the United States at the time of the 

interview. It is a cross-sectional household interview survey and the sampling plan follows 

a complex, multistage probability sample that incorporates stratification, clustering, and 

oversampling of some subpopulations (e.g., Black, Hispanic, and Asian) in some years (MPC, 

2011; NCHS, 2012). Because of the complex sampling design of the NHIS, sampling weights 

are constructed so that each unit (survey respondent or household) can be inflated or 

expanded to represent other individuals or households in the United States (NCHS, 2012).  
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The NHIS questionnaire contains four major components: Household, Family, Sample 

Adult, and Sample Child. The Household component collects demographic information on 

all of the individuals living in a particular house. The Family component collects additional 

demographic information on each member from each family in the house and collects data 

on topics including health status and limitations, injuries, healthcare access and utilization, 

health insurance, and income and assets. The Family Core component allows the NHIS to 

serve as a sampling frame for additional integrated surveys as and when needed. From 

each family in the NHIS, one sample adult and one sample child are randomly selected and 

information on each is collected with the Sample Adult Core and the Sample Child Core 

questionnaires. Because some health issues are different for children and adults, these two 

questionnaires differ in some items but both collect basic information on health status, 

health care services, and health behaviors. Its protocol and administration have been 

approved by the NCHS's Research Ethics Review Board, and all NHIS participants provide 

informed consent (NCHS, 2012). 

For the purpose of our model population, we pooled the data for 2011, 2012 and 2013 to 

generate a recent national estimate of the US population with specific demographic and 

smoking-related characteristics. Each data file contained household, family, and person 

record identifiers that made merging the data files possible. Once the data files were sorted 

by the household, family, and person record identifiers (coded as HHX, FMX and FPX in 

NHIS, respectively), the Household, Person, and Sample Child data files were merged, for 

each of the three years. Variable names were changed from one year to another when 

required. The data across the years were combined or concatenated to increase the 

number of observations or respondents and thus increase the precision of estimates. The 
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three years’ worth of merged data files joined one after the other (concatenation). New 

weights were constructed to adjust for combining data years. For three years of data, the 

new weights were calculated by dividing the original weights by 3 to give the final weight 

of every individual in the sample.  

The pooled dataset had 86,402 individuals who had complete information on their 

demographic characteristics and smoking behavior. We classified a respondent's cigarette 

smoking behavior by his/her answers to questions about cigarette smoking status and 

smoking cessation attempts based on an existing NHIS recoded variable with six response 

levels: current smoker, recent former smoker, and never smoker.  Respondents that 

reported having smoked at least 100 cigarettes in their entire life and were currently 

smoking every day or some days at the time of interview, were classified as current 

smokers (CS). Respondents reported smoking at least 100 cigarettes during their lifetime 

but currently did not smoke at least for the past 12 months, were classified as former 

smokers (FS). FS were further classified into recent former smokers or late former 

smokers. Recent former smokers were those former smokers who had stopped smoking 

less than 12 months ago. Late former smokers were those former smokers who had 

stopped smoking over a year ago.  

 

Respondents reported not having smoked at least 100 cigarettes in their life and were not 

currently smoking for the past 12 months, were classified as never smokers (NS). This 

method of smokers’ classification has been recommended by NCHS and is used in earlier 

studies done on smoking population (Mehta & Preston, 2012).   
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Descriptive analyses was run on the sample to calculate the frequency distribution of 

population demographic and smoking characteristics.  The demographic categories 

included age (<21, 21-35, 36-50, 51-65, >65), gender (male, female), race (white, black, 

other), and education level (less than high school, high school, college). The smoking-

related categories included years of regular smoking (for current smokers), at least one 

quit attempt in the past 12 months (for current smokers) and nicotine dependence score 

(for current smokers). The information on nicotine dependence had to be utilized from a 

different source. We used the estimates of a matched sample, from a web based survey on 

current and former smokers in the US (Yeomans et al., 2011). 

Probability estimates related to e-cig use  

The probabilities of current e-cig use associated with different demographic and smoking 

characteristics, among different smoking categories of the US population were derived 

from the prevalence estimates published in several cross-sectional and longitudinal e-cig 

studies done in the US.  

The e-cig prevalence estimates associated with age, gender, race, education level for 

current, former and never smokers were utilized from the Knowledge Networks survey 

data, which was commissioned by the University of California, San Diego (Zhu et al., 2013). 

The survey collected information on smoking history and cigarette use, perceptions about 

different tobacco products and quitting aids, attitudes toward tobacco control efforts, and 

beliefs and ideation about the process of quitting smoking. The study sampled the smokers, 

former smokers and never smokers from the panel in a way such that the three smoking 

status groups were approximately equal in size. The final survey sample consisted of 3,111 



www.manaraa.com

current smokers, 3,676 former smokers and 3,254 never smokers. Following the same 

classification as our NHIS sample, current smokers (CS) were defined as those who had 

smoked at least 100 cigarettes in their lifetime and were still smoking some days or every 

day at the time of survey administration. Former smokers were defined as smokers who 

smoked at least 100 cigarettes in their lifetime and were not smoking at the time of survey 

administration. Former smokers were further classified into recent former smokers (RFS) 

and late former smokers (LFS). Former smokers were classified as RFS if they smoked their 

last cigarette within the time period of 1 year or less, and as LFS if they smoked their last 

cigarette over 1 year ago. Never smokers (NS) were defined as those who had not smoked 

100 cigarettes in their lifetime (Zhu et al., 2013).  

 

Use of e-cigs was also assessed in multiple questions. First, respondents were asked if they 

had ever heard of e-cigs. Next, those who had heard of e-cigs were asked if they had ever 

tried an e-cig. Those who answered yes were considered ever users. Ever users were also 

asked if they had used e-cig multiple times in the last 30 days. Those who answered yes, 

were considered current e-cig users (Zhu et al., 2013).  

 

Along with the prevalence estimates associated with demographic characteristics, the 

Knowledge Networks Panel survey data also provided related standard errors and 95% 

confidence intervals which were used to carry out sensitivity analyses for the simulation 

model. We did not use the prevalence estimate for ever e-cig users as published studies 

have indicated that ‘ever use’ is not the accurate measure of e-cig prevalence (Adkison et 

al., 2013; Bell & Keane, 2012). Mostly, ever users have been known to try e-cig once and not 
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continue after that. Also, we wanted to use a conservative estimate in our simulation model 

to predict the outcomes. Hence, current e-cig use estimates were chosen over ever e-cig 

use. 

 

Zhu et al did not report the prevalence associated with e-cig users below 18 years. Since 

the age group of 6-18 years has been associated with a high use of e-cig in the US (Agaku et 

al., 2014), we used another study to obtain prevalence estimates of age category 6-20 

years. The study analyzed a sample of 3,912 high school and middle school students of 

current and recent former cigarette smokers and e-cig users (Camenga et al., 2014). The 

students were attending high schools in Connecticut and New York and were asked similar 

questions as in the Knowledge Networks survey.  

 

For the probability associated with making a quit attempt, we used estimates from the 

Legacy Longitudinal Smoker Cohort (LLSC) survey data (Pearson et al., 2012). The LLSC 

collected data on a large cohort of current smokers and recent former smokers (n= 5616) 

living in the US, and was used to obtain demographic and point estimates for awareness, 

use, and harm perceptions associated with e-cigs.  

 

The e-cig use associated with the nicotine dependence score and cigarette per day use, 

were derived from estimates obtained from the International Tobacco Control Four 

Country Survey (ITC-4) data, conducted between 2002 and 2011 (Kasza et al., 2014). The 

survey population consisted of 6,110 adult smokers in the US, Canada, UK and Australia 

and it examined the demographic and smoking-related predictors of use of unconventional 
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tobacco products (i.e., other smoked tobacco products, smokeless tobacco products, 

unconventional cigarettes, and e-cigs). We used the estimates reported for the US 

population. The prevalence estimates along with the source for current, recent former, late 

former and never smokers are summarized in tables 6, 7, 8 and, 9 respectively, in the 

results section. 
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Model parametrization 

 

The model was structured in terms of the specific events that individuals experience over 

the course of the simulation. The events and the attributes assigned to the model 

population were chosen after reviewing the e-cig literature and choosing the variables 

which had statistically and practically significant association with the use of e-cig among 

current, former and never smokers. Most studies indicated that age, gender, race, education 

level, years of smoking, past quit attempts, and nicotine dependence showed a significant 

association with the use of e-cig among current cigarette smokers (Kalkhoran, Grana, 

Neilands, & Ling, 2015; Kasza et al., 2014; King et al., 2013; McMillen, Gottlieb, Shaefer, 

Winickoff, & Klein, 2014). Accordingly, each individual was assigned a set of unique 

attributes which were corresponding to their baseline characteristics at the start of the 

simulation. These attributes or characteristics, were updated throughout the simulation, 

depending on the subject’s course through the model. The set of events in the simulation 

correspond closely to the behavior of e-cig users when they switch to e-cigs.  

 

At the beginning, 100,000 smokers were generated by using the “Create” module from the 

Arena toolbar.  The smokers were created and an exponential distribution was assigned to 

their arrival in the system. Once the model population was generated, the next step was to 

send them into one of the four branches; CS, RFS, LFS, and NS. The percent of people sent 

into each depended on the real live distribution of smokers obtained from the NHIS data. 

Next, the smokers were assigned baseline attributes using the “Assign” module. We 

assigned age, gender, race, education level, nicotine dependence, years of smoking, 
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cigarette per day use, and past quit attempts to each initial smoker. We then recorded each 

smoker's yearly progress based on these assigned characteristics. 

Age 

The age assignment was done using the frequency distribution from the NHIS survey. The 

attribute “Age” was categorized into 5 age groups, which matched the data available for e-

cig use. A continuous probability distribution was assigned to the Age attribute. 

Additionally, an original age attribute “AgeOrig” was assigned in the simulation to keep the 

track of the smokers’ increasing age within the system. Finally, another attribute “Age 

Group” was assigned based on current age in the model.  

Gender 

Similar to the age assignment, the “Gender” attribute was assigned using the frequency 

distribution from the NHIS survey. The assignment was done at two levels; 1-Male, 2-

Female, and a discrete probability distribution was assigned to this attribute. 

Race 

The smokers’ race was assigned as a 3-level attribute named “Race”. Derived from the NHIS 

sample, level 1 was for “white”, 2 for “black” and 3 for “others”.  The Race categorization 

was done to match the e-cig use data. Similar to the Gender attribute, Race was assigned a 

discrete distribution.  
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Education 

The education level was assigned as a 3-level attribute named “Education”. Derived from 

the NHIS sample, level 1 was for smokers who had did not have a high school diploma, 2 for 

smokers who had at least a high school diploma and 3 was for smokers who had at least a 

college degree. The Education categorization was done to match the e-cig use data. 

Education was also assigned a discrete probability distribution.  

Nicotine Dependence score 

The next assignment was done using the “Assign” module again and it was used to assign 

the nicotine dependence score attribute “FTND score” to current smokers. The 3-level 

attribute derived the values from the matched sample from the web-based survey of US 

current smokers (Yeomans et al., 2011). It was assigned a discrete probability distribution. 

Previous Quit attempts 

The assignment of previous quit attempts was done using the distribution from the NHIS 

sample. The 2-level attribute was named “PrevQuit” and it had 0 for smokers who did not 

make even a single quit attempt and 1 for smokers who had attempted to quit at least once 

in their life. It was assigned a discrete probability distribution. Along with the “PrevQuit” 

attribute, another attribute named “CountQuitAttempt” was assigned in the system. The 

original value of this attribute was assigned as “PrevQuit” and its value was supposed to 

increase with every quit attempt a smokers makes in the simulation. Essentially, this step 

created the history of quit attempts before the current smokers entered the simulation 

model.  CountQuitAttempt attribute was used to add the new quit attempts to the quit 
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attempts already made in the past (PrevQuit) of a current smoker, and there by changed 

the individual risk associated with the quit attempts in the system. 

Assigning baseline probabilities and distributions 

The probability for each event in the simulation model was assigned using the “Variable” 

module. A specific probability within each level of attribute, for every attribute was 

assigned which was responsible for events experienced by that individual smokers through 

the simulation. The probabilities were derived from the e-cig prevalence estimates 

discussed above.  

Two specific distributions were assigned to the probabilities in the model, Continuous and 

Discrete. The Continuous distribution in Arena returns a sample from a user-defined 

continuous distribution, which in this case was the age distribution. Pairs of cumulative 

probabilities and associated values are specified, and then the sample returned has a real 

number between associated values and with corresponding cumulative probabilities. The 

continuous empirical distribution is often used to incorporate actual data for continuous 

random variables directly into the model.  

The Discrete function in Arena returns a sample from a user-defined discrete probability 

distribution. The distribution is defined by the set of n possible discrete values that can be 

returned by the function and the cumulative probabilities. In our study, model inputs such 

as gender (1, 2), race (1, 2, 3), or education level (1, 2, 3) had discrete distribution.  The 

discrete empirical distribution is often used to incorporate discrete empirical data directly 

into the model.  
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Simulation Pathway 

This section presents the events that determine whether or not simulated smokers will 

become an e-cig user or not. For current smokers, these events were: 

 Using e-cig 

 Making a quit attempt 

 Relapse 

 Quitting 

 Ageing 

 Leaving the model 

Once the smoker entered into the model, he/she was assigned the baseline attributes, 

associated probabilities and the corresponding probability distributions. After that, the 

smokers moved ahead and were given a choice to initiate using e-cig. The decision to use or 

not use came from the probability equations discussed below.  

If the smoker decided to start using e-cig, he or she was given a chance to quit using e-cig 

within that same year. Around 48% made a quit attempt after using e-cig once and did not 

use it again. However, 52% continued using e-cig. This estimate was used from the study 

conducted by Kasza et al where the smokers who became e-cig users were asked after 1 

year if they had made any attempts to stop smoking after using e-cig (Kasza et al., 2014).  

Smokers who made a quit attempt the same year, were evaluated if they made a relapse to 

using e-cig within the same year. Based on the same study, 9% smokers who attempted a 

quit attempt did not make a relapse and stayed a quitter (Kasza et al., 2014). These quitter 
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were then assigned the status of “Former smoker” and their risk of e-cig use also were 

changed accordingly. Smokers who continued using e-cigs (relapse) were allowed to 

remain the in the loop and age in the simulation process. Next year, these smokers were 

made to pass through quit attempt module again to see if they made a quit attempt next 

year. Smokers who made a relapse were evaluated for the number of quit attempts and 

their age.  

With each failed quit attempt, the probability of using the e-cig increased by 13% according 

to the literature (Pearson et al., 2012). We factored this scenario by recording the new quit 

attempts made after initiating the e-cig to the “CountQuit” attribute. That way, the new quit 

attempts were added to the history of previous quit attempts, and accordingly changed the 

overall probability of using the e-cig again in the simulation model. We did not want the 

probability to cross over 100% with several quit attempts, so we limited the number of quit 

attempts to 4. Anyone who made 4 quit attempts in the model, was counted as a regular e-

cig user and allowed to exit the model.  

Finally, smokers who did not initiate e-cig in the first year were allowed to age and 

assigned two new risks for initiating e-cig next year. First, as they aged a new risk of using 

e-cig was assigned based on their new age. Second, after 7 years into the simulation, every 

year the overall risk was made to reduce by 1% of the preceding year. We did this because 

we assumed that the initiating probability of e-cig will reduce in future due to variety of 

reasons ranging from new policies or regulations to the launch of new unconventional 

tobacco products. Also, since e-cig has been launched fairly recently, currently it is not 

regulated by any agency. However, in a few years, perhaps the FDA will control the sale of 
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e-cigs to young adults, or another unconventional tobacco product will be launched, or the 

consumer will have enough information about e-cig to make a decision, so its prevalence 

will wane down (Foulds et al., 2011). Hence, we factored this in by reducing the overall risk 

each subsequent year. Please see figure 3 for the working structure of the DES model. We 

used the risk reduction of 1% from a recent study done to examine the potential impact of 

price-related and tax-related policies on e-cigs use by assessing the own and cross-price 

elasticity of demand for e-cigs (Huang, Tauras, & Chaloupka, 2014). The study reported a 

10% increase in price would reduce sales of e-cigs by approximately 12% or 10%. Taking 

the conservative approach, we first reduced the risk by 1% each year after the 7th year, and 

then tested the impact by increasing it to 3% and 5% each year in sensitivity analyses. 

Similarly, we tested the impact of timing of the policy by applying it at 5 years, 10 years and 

not applying it at all.   

Cumulative probability equation 

The ideal way to calculate the probability of an event happening is to run a linear 

regression on the model parameters to get the relationship and mutually exclusive 

probabilities. According to the probability theory, events E1, E2, En are said to be mutually 

exclusive if the occurrence of any one of them implies the non-occurrence of the 

remaining n − 1 events. Therefore, two mutually exclusive events cannot occur at the same 

time. Formally said, the intersection of each two of them is empty (the null event): A ∩ B = 

0. In consequence, mutually exclusive events have the property: P(A ∩ B) = 0 

(Beerenwinkel & Siebourg, 2012). 

http://en.wikipedia.org/wiki/Probability_theory
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However, due to unavailability of individual level data related to e-cig, we were unable to 

use mutually exclusive probabilities. Instead, we used non-mutually exclusive event 

probabilities. Non-mutually exclusive events are events in which there is some overlap. 

When P(A) and P(B) are added, the probability of the intersection is added twice. To 

compensate for that double addition, the intersection needs to be subtracted. In other 

words, the probability of one or both events occurring is denoted P(A ∪ B) and in general it 

equals P(A) + P(B) – P(A ∩ B) (Beerenwinkel & Siebourg, 2012). Hence, we added all the 

individual probabilities associated with e-cig use and subtracted the intersections from the 

total sum. 
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Outcome Measures 

 

Structural simulation of e-cig users’ behavior 

 

One of the broader outcome of this study was to make an exploratory model which uses the 

currently available literature in structurally capturing the behavior of current, former and 

never smokers in terms of e-cig use. The model structure accounted for change in smoking 

habits, temporary or permanent use of e-cig, quitting behavior and relapse to smoking.  

 

E-cig prevalence among current, former and never smokers  

 

Another important outcome of this study was to estimate the national prevalence of e-cig 

use among the population of current cigarette smokers, past cigarette smokers and never 

smokers, and plot the estimates against time. The prevalence was also estimated in the sub 

population groups, specifically within different age groups, gender, race, and education 

level. The model was run for the period of fifteen years and the prevalence was plotted 

against time for each of the fifteen years. 
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Simulation runs 

 

The model ran several sets of analyses to introduce the variation around the estimates. 

Specifically, the model was run using populations of 100,000 current, former and never 

smokers. Every simulation was for 100 replications to obtain confidence intervals when 

examining changes in the smoking groups.  

 

Calculating smoking prevalence 

The prevalence was calculated using the formula below: 

 The average number of simulated CS, recent FS, late FS and NS who were recorded 

as e-cig users at the end of the simulation, for each time period. 

 The size of the simulated smoking population (N=100,000) which entered the 

model. 

 Since it is a population model, each year the number of people being born and dying 

were taken care by implementing the equation: 

 
 

 
 

 
 
The birth rate (br) adds to and the death rate (dr) subtracts from the population at 

each point, and the rates were obtained from the US census bureau website (US 

Census Bureau, 2014). 

 

Population t+1 = Population t + br * Population t – dr * Population t 
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 Prevalence was then calculated by dividing the average number of e-cig users 

during the specified time period by the size of the simulated population.  

The formula for calculating prevalence is shown below. 

Prevalence= 
E-cig users at the end of each time period 

Size of simulated population during the same time period 
X 100 
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Model validation 

  

The model was validated by a variety of methods. First, the model was tested for internal 

validation by using null and extreme input values to test whether they produce the 

expected outputs. This helped in verifying that the mathematical equations were 

calculating the correct values. Secondly, it was checked for debugging that included getting 

the program code examined for syntactical errors and test of reproducibility using 

equivalent input values. Debugging was performed by getting the programming code 

verified by Dr. Jaime Carro (Evidera) and Dr. Jorgen Moller (Evidera), who are experts in 

DES programming and have been making DES models in healthcare evaluation for over 10 

years. Thirdly, the structural validity was conducted by getting the model structure 

examined by experts in the area of e-cig use. It ensured that the model incorporated all the 

feasible behavior scenarios in the model structure. Additionally, the model structure was 

validated by comparing our model structure with other published DES models (Gestios et 

al, 2013; Howard et al, 2008) which looked at cigarette smoking behavior and smoking 

cessation strategies, and the scenarios applicable to smoking behavior were incorporated 

in our model structure.  Fourth, the model was tested for internal consistency by verifying 

that the mathematical probability equations used in the model were correct based on the 

probability theory and by seeking expert opinion from professionals in modeling and 

systems analyses. This was done by getting model structure verified by Dr. Edward Boone 

(VCU) and Marc Botteman (Pharmerit), who are experts in the area of system analysis. 

They checked the flow of smokers through different branches and helped in authenticating 

the output of our model.  
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We believe that getting our model verified by external DES and system analysis experts 

also increased the face validity of the model. Face validation helped to ensure that the 

model was constructed and used in accordance with the most current scientific and best 

available evidence. This enhanced the credibility and the acceptance of results. Moreover, 

we were able to perform limited amount of external validity which means comparing the 

model’s results to actual information in the real world. It involved comparing our model’s 

first year’s results with the most recent CDC reports on e-cig prevalence in the US 

population. Due to data limitation, we could not perform an independent validation 

whereby data used to validate comes from a source other than the one used to build the 

model.  
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Figure 3. Working flowchart of the model structure. 
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Model assumptions 

 

 The proportion of smokers using e-cigs in each sub-group was assumed as 

probabilities associated with the use of e-cig. 

 The decision to use or not to use an e-cig each year in the model, depended only 

upon their baseline demographic and smoking characteristics and associated 

probabilities.  

 The probability associated with making a quit attempt toward e-cig were assumed 

to be similar to the probability associated with quitting regular cigarette. 

 Smokers inside the simulation model were not all allowed to use any external 

smoking cessation source such as primary or secondary smoking cessation 

treatments. Also, they were assumed to be willing to try e-cig as a smoking cessation 

tool. 

 The quit attempt made inside the simulation model was assumed to be associated 

only with the use of e-cig and not because of external factors such as smoker’s 

intention, health risks, or cost changes. 

 In never smokers, a person was assumed to not initiate using e-cig after 35 years of 

age.  

 The nicotine dependence score derived from the matched sample of the web based 

survey smokers’ profile were assumed to be the nicotine dependence score of 

current smoker population created from NHIS. 

 The effect of e-cig policies and regulations which will come into place in future was 

assumed to be 1% and was factored in the model by structuring a branch for non e-
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cig users which reduced the overall probability of using e-cig by 1% each 

subsequent year.  

 It was assumed that the smoking environment will not have any drastic change 

which will affect the initiation and the use of e-cig for the next 15 years. 

 Smokers over 85 years were assumed to die and allowed to exit the model.  

 The number of maximum quit attempts a person could make in the simulation was 

capped at 4. 

 All e-cig users were assumed to be using a nicotine containing e-cigs.  
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Model Population Descriptive Analyses  

 

Demographic 
attributes 

N Weighted N Weighted % 
Standard 

error 

Age     

<21 years 60 839069 1.825 0.257 

21-35 years 1209 15951411 34.701 1.063 

36-50 years 1184 15583632 33.901 0.808 

51-65 years 944 10921864 23.760 0.898 

>65 years 376 2671325 5.811 0.449 

     
Gender     

 Male 2179 25536741 55.554 1.089 

 Female 1594 20430560 44.445 1.089 

     

Race     
White  1813 31386247 68.279 2.521 

Black  944 6412197 13.949 1.385 

Other  1016 8168857 17.771 1.603 

     
Education     

No high school 
diploma 

391 2958378 9.615 0.692 

High school 
diploma 

1079 13470898 43.781 1.400 

Any college 1032 14339077 46.603 1.504 

 
 
 
 
 
 

Table 2(a). Demographic attributes of the national sample of current cigarette smokers. 
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Smoking related attributes 

CPD (Means, SD) 11.87 (8.80) 
Years of regular smoking 
(Means, SD) 27.02 (15.69) 
At least 1 quit attempt in past 12 
months (%) 46.97  

 

 

 

Table 2(a) presents the baseline characteristics of the current cigarette smokers’ 

population in the US. The weighted N and the weighted percent indicate the nationally 

representative sample. The age-wise distribution indicated that most of the current 

smokers were in the age-group 21-35 years old (34.70%), followed by the age group of 

36-50 years old (33.90%). Around 55.56% of CS were males, 68.28% white and 46.60% 

had a college degree. Table 2(b) presents the distribution with respect to the smoking 

related attributes. Mean (SD) cigarette per day (CPD) use and mean (SD) years of 

regular smoking were found to be 11.87(8.8) and 27.02(15.69), respectively. Around 

46.97% of current smokers had attempted at least 1 quit attempt in the past 12 months.  

 

 
 
 
 
 
 
 
 

Table 2b. Smoking related attributes of the national sample of current cigarette smokers. 
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Demographic attributes N Weighted N Weighted % 
Standard 

error 

Age     

<21 years 18 271816 0.515 0.163 

21-35 years 496 8135462 15.427 0.976 

36-50 years 774 12341650 23.404 1.126 

51-65 years 1279 16893561 32.036 0.923 

>65 years 1694 15089969 28.616 1.138 

     

Gender     

 Male 2560 29172122 55.321 1.082 

 Female 1701 23560335 44.679 1.082 

     

Race     
White NH 2323 41275536 78.273 1.710 

Black NH 730 3814939 7.234 0.781 

Other NH 1208 7641983 14.491 0.835 

     

Education     

No high school diploma 552 3452526 10.832 0.955 

High school diploma 949 11874463 37.255 1.836 

Any college 1189 16546498 51.913 2.020 

 

 
Table 3 presents the baseline characteristics of the recent former cigarette smokers’ 

population in the US. Most of the smokers were in the age group 51-65 years old 

(32.03%) followed by smokers in the age group >65 years old (28.61%). The age group 

of <21 years old had the least proportion of smokers (0.52%). Around 55.32% of recent 

FS were males, 78.27% white and 51.91% had a college degree.  

 
 
 

Table 3. Demographic attributes of the national sample of recent former cigarette smokers. 
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Demographic attributes N Weighted N Weighted % 
Standard 

error 

Age     

<21 years 9 152956 0.323 0.145 

21-35 years 359 6026529 12.753 0.924 

36-50 years 676 10743499 22.734 1.108 

51-65 years 1187 15758480 33.347 0.898 

>65 years 1630 14574125 30.841 1.229 

     

Gender     

 Male 2336 26293298 55.640 1.030 

 Female 1525 20962291 44.359 1.030 

     

Race     
White NH 2124 37248217 78.822 1.662 

Black NH 653 3347783 7.084 0.779 

Other NH 1084 6659589 14.092 0.812 

     
Education     

No high school diploma 511 3202542 11.298 1.041 

High school diploma 848 10604450 37.413 1.903 

Any college 1074 14537169 51.288 2.017 

 

 
Table 4 presents the baseline characteristics of the late former cigarette smokers’ 

population in the US. Similar to recent FS, most of the late FS were in the age group 51-

65 years old (33.35%) followed by smokers in the age group >65 years old (30.84%). 

The age group of <21 years old had the least proportion of smokers (0.32%). Around 

55.32% of late FS were males, 78.82% white and 51.28% had a college degree.  

 
 
 

Table 4. Demographic attributes of the national sample of late former cigarette smokers. 
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Demographic attributes N Weighted N Weighted % 
Standard 

error 

Age     
<21 years 231 3340197 2.771 0.403 

21-35 years 2679 35530624 29.484 0.940 

36-50 years 2574 37034518 30.732 0.880 

51-65 years 2199 27546725 22.859 0.662 

>65 years 1980 17053907 14.151 0.507 

     

Gender     

 Male 3907 50751366 42.115 0.598 

 Female 5756 69754605 57.884 0.598 

     
Race     

White NH 3637 76205275 63.237 2.208 

Black NH 2125 14735580 12.228 1.090 

Other NH 3901 29565116 24.534 1.249 

     
Education     

No high school diploma 1189 7503846 11.060 0.755 

High school diploma 2023 24466045 36.061 1.052 

Any college 2681 35875006 52.878 1.173 

 

 
Table 5 presents the baseline characteristics of the never smokers’ population in the US. 

Most of the NS were in the age group 36-50 years old (30.73%), followed by smokers in 

the age group 21-35 years old (29.48%). The age group of <21 years old had the least 

proportion of smokers (2.78%). Around 57.88% of NS were females, 63.23% white and 

52.88% had a college degree.  

 
 

Table 5. Demographic attributes of the national sample of never cigarette smokers. 
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Tables 6, 7, 8 and 9 show the results of the literature review done to obtain demographic 

and smoking behavior related risks associated with the initiation of e-cig. The tables list the 

assignment of probabilities associated with initiating of e-cig use, based on each level of 

population attribute for current, recent former, late former and never smokers, 

respectively. Along with that, the columns show the assigned probability distributions, data 

source and the studies which analyzed the data and reported those estimates.  
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Model Input Parametrization  

 

 
 

 

Table 6 presents the mutually unexclusive probabilities associated with the initiation of 

e-cig based on different attributes, in current smokers. The highest probability of 

Parameters 
E-cig use 

probability 
Assigned probability 

distribution 
Data Source 

Age, years  Continuous School students  survey  in Camenga et al 

<21 0.14  NY and  CT, Knowledge Zhu et al 

21-35 0.072  Networks Panel  Survey  

36-50 0.059    

51-65 0.082    

>65 0.002    

Gender  Discrete Knowledge Zhu et al 

Male 0.049  Networks Panel  Survey  

Female 0.086    

Race   Discrete Knowledge Zhu et al 

White  0.075  Networks Panel  Survey  

Black 0.062    

Other 0.014    

Education status   Discrete School students  survey  in Camenga et al 

less than high school 0.088  NY and  CT, Knowledge Zhu et al 

more than high school 0.066  Networks Panel  Survey 
 

any college 0.045    

FTND Score   Discrete International Tobacco Kasza et al 

Low 0.016  Control Four Country  

Medium 0.014  Survey (ITC-4) data  

High 0.021    

Quit attempts within past 
12 months   Discrete Legacy Longitudinal 

 
Pearson et al 

None 0.013  Smoker Cohort (LLSC)  

At least 1 0.037  survey data  

Table 6. E-cig initiating probabilities and assigned distribution for current smokers. 
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initiation was found to be in the age group of <21 years (0.35) compared to other age 

groups. Females (0.56), whites (0.48), and those who had less than high school 

education (0.49) had a higher probability than their counterparts. With respect to 

smoking-related attributes, smokers having a high nicotine dependence (0.52) and 

those who had at least one quit attempts in the past (0.64) had a higher probability than 

their counterparts.  

 

 

 

 

Parameters 
E-cig use 

probability 
Assigned probability 

distribution 
Data Source 

Age, years  Continuous School students  survey  in Camenga et al 

<21 0.100  NY and  CT, Knowledge Zhu et al 

21-35 0.073  Networks Panel  Survey  

36-50 0.059    

51-65 0.082    

>65 0.026    

Gender  Discrete Knowledge Zhu et al 

Male 0.049  Networks Panel  Survey  

Female 0.076    

Race   Discrete Knowledge Zhu et al 

White  0.076  Networks Panel  Survey  

Black 0.062    

Other 0.028    

Education status   Discrete School students  survey  in Camenga et al 

less than high school 0.088  NY and  CT, Knowledge Zhu et al 

more than high school 0.066  Networks Panel  Survey 
 

any college 0.045    

Table 7. Baseline attributes, corresponding probabilities and assigned distribution for recent former smokers. 
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Table 7 presents the probabilities associated with the initiation of e-cig in recent former 

smokers. Similar to current smokers, the highest probability of initiation was found to 

be in the age group of <21 years (0.31), females (0.51), whites (0.44), and those who 

had less than high school education (0.51).  

 

 

 

 

 

 

 

Parameters 
E-cig use 

probability 
Assigned probability 

distribution 
Data Source 

Age, years  Continuous School students  survey  in Camenga et al 

<21 0.039  NY and  CT, Knowledge Zhu et al 

21-35 0.011  Networks Panel  Survey  

36-50 0.004    

51-65 0.032    

>65 0.001    

Gender  Discrete Knowledge Zhu et al 

Male 0.002  Networks Panel  Survey  

Female 0.008    

Race   Discrete Knowledge Zhu et al 

White  0.008  Networks Panel  Survey  

Black 0.001    

Other 0.003    

Education status   Discrete School students  survey  in Camenga et al 

less than high school 0.002  NY and  CT, Knowledge Zhu et al 

more than high school 0.001  Networks Panel  Survey 
 

any college 0.007    

Table 8. Baseline attributes, corresponding probabilities and assigned distribution for late former smokers. 
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Table 8 presents the probabilities associated with the initiation of e-cig in late former 

smokers. The highest probability of initiation was found to be in the age group of 21-35 

years (0.36), females (0.51), whites (0.41), and those who had college level education 

(0.43).  

 

 

 
Table 9 presents the probabilities associated with the initiation of e-cig in never 

smokers. Since we assumed that never smokers will not initiate e-cig use after 35 years, 

we only used probabilities of <21 years and 21-35 years age groups. The age group <21 

years (0.58), females (0.53), whites (0.47), and those who had college level education 

(0.45) had a higher probabilities than their counterparts.  

 

Parameters 
E-cig use 

probability 
Assigned probability 

distribution 
Data Source 

Age, years  Continuous School students  survey  in Camenga et al 

<21 0.011  NY and  CT, Knowledge Zhu et al 

21-35 0.007  Networks Panel  Survey  

     

Gender  Discrete Knowledge Zhu et al 

Male 0.005  Networks Panel  Survey  

Female 0.007    

Race   Discrete Knowledge Zhu et al 

White  0.006  Networks Panel  Survey  

Black 0.006    

Other 0.001    

Education status   Discrete School students  survey  in Camenga et al 

less than high school 0.008  NY and  CT, Knowledge Zhu et al 

more than high school 0.006  Networks Panel  Survey 
 

any college 0.004    

Table 9. Baseline attributes, corresponding probabilities and assigned distribution for never smokers. 



www.manaraa.com

 

 

                                                     

 

 

Figure 4. E-cig use simulation model

Creating smokers and assigning 

baseline characteristics based 

on the NHIS population data 
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population attributes and 

incorporating different e-cig use 

scenarios 

Recording e-cig prevalence, aging 

of the population, going back into 

the loop and population exodus 
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E-cig Prevalence in Current Cigarette Smokers 

 
 

 
 
 
 
 
Figure 5 presents the projected e-cig use for the overall population of current cigarette 

smokers in the US. The prevalence was found to increase steadily from around 2% in the 

first year to around 6.7% in the eight years. From there onwards, the increase was found to 

slow down and found to be 7.9% at the end of the simulation period.  
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Figure 5. Projected estimate of e-cig prevalence among initial current cigarette smokers 
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Figure 6 presents the projected estimates of e-cig use by age group among current cigarette 

smokers. The highest prevalence at the end of the simulation period was found in smokers 

in the age group of 6-20 years. It was followed closely by smokers in the age group of 21-35 

years. The highest number of e-cig users after those two categories were found to be in 51-

65 years, 36-50 years and lowest in over 65 years.  
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Figure 6. Projected e-cig prevalence by age group among initial current cigarette smokers in the US. 
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Figure 7 presents the projected estimates of e-cig use by gender among current cigarette 

smokers. Males and females showed approximately the same prevalence through the 

simulation period. Males were found to be slightly higher users at the end of the simulation 

period.  
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Figure 7. Projected e-cig prevalence by gender among initial current cigarette smokers in the US. 
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Figure 8 presents the projected estimates of e-cig use by race among current cigarette 

smokers. Smokers belonging to the white race consistently showed a higher e-cig use than 

smokers belonging to the black and other races. Current smokers belonging to races other 

than black and white showed the lowest prevalence.  
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Figure 8. Projected e-cig prevalence by race among initial current cigarette smokers in the US. 
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Figure 9 presents the projected estimates of e-cig use by education level race among 

current cigarette smokers. The highest e-cig use was projected in the smokers who had less 

than high school level education compared to smokers with either a high school education 

or a college degree. The prevalence was not very different between the current smokers 

having a high school degree or a college level education. 
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Figure 9. Projected e-cig prevalence by education among initial current cigarette smokers in the US. 
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E-cig Prevalence in Recent Former Cigarette Smokers 
 
 

 
 
 

 

 

Figure 10 presents the projected e-cig use for the overall population of recent former 

cigarette smokers in the US. Here, the prevalence of e-cig use was found to increase steadily 

from around 2% in the first year to around 7.5% at the end of the simulation period. The 

increased in prevalence was observed to slow down near the end of the simulation period, 

around the 8th year.  
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Figure 10. Projected estimate of e-cig prevalence among initial recent former cigarette smokers 
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Figure 11 presents the projected estimates of e-cig use in recent former smokers classified 

by different age groups. The highest prevalence at the end of the simulation period was 

found in smokers in the age group of 6-20 years. It was followed by smokers in the age 

group of 21-35 years. The prevalence in the age group 36-50 years, and 51-65 years were 

found to be nearly equal at the end of the simulation period. The e-cig use was found to be 

lowest in the age group of >65 years.  
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Figure 11. Projected e-cig prevalence by age group among initial recent former cigarette smokers in the US. 
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Figure 12 presents the projected estimates of e-cig use by gender among recent former 

cigarette smokers. Unlike the current smokers, the prevalence of e-cig use was projected to 

be higher in females than males. The gap between males and females however reduced as 

the simulation progressed.  
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Figure 12. Projected e-cig prevalence by gender among initial recent former cigarette smokers in the US. 
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Figure 13 presents the projected estimates of e-cig use by race among recent former 

cigarette smokers. Similar to the projection in current smokers, recent former smokers 

belonging to the white race consistently showed a higher e-cig use than smokers belonging 

to the black and other races. Recent former smokers belonging to the black race showed 

the lowest prevalence.  
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Figure 13. Projected e-cig prevalence by race among initial recent former cigarette smokers in the US. 
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Figure 14 presents the projected estimates of e-cig use by different education level among 

recent former cigarette smokers. The highest e-cig use was projected in the smokers who 

had a less than high school education, followed closely by smokers who had a college 

degree, and finally in smokers who had at least a high school education. 
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Figure 14. Projected e-cig prevalence by education among initial recent former cigarette smokers in the US. 
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E-cig Prevalence in Late Former Cigarette Smokers 
 
 

  
 
 

 
 

Figure 15 presents the projected e-cig use for the overall population of late former 

cigarette smokers in the US. Unlike the e-cig prevalence in late former smokers, the 

prevalence of e-cig use in late former smokers was projected to be lower in magnitude. The 

prevalence grew steadily from approximately 0.3% to 1% in first four years, and then 

showed very little increase for the rest of the simulated period. The prevalence was found 

to be 2.9% at the end of the simulation period.   
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Figure 15. Projected estimate of e-cig prevalence among late former cigarette smokers in the US. 
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Figure 16 presents the projected estimates of e-cig use in recent former smokers classified 

by different age groups. Among different age groups, the highest prevalence at the end of 

the simulation period was found in smokers in the age groups of 21-35 years. Following 

that, the age groups 36-50 years and 51-65 years showed the next highest number of e-cig 

users. The lowest number of e-cig users were found to be in the age groups of 6-20 years 

and >65 years.  
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Figure 16. Projected e-cig prevalence by age group among initial late former cigarette smokers in the US. 
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Figure 17 presents the projected estimates of e-cig use by gender among late former 

cigarette smokers. The projected estimates showed that the prevalence was similar in 

males and females through the simulation period. Initially, females had a higher number of 

e-cig users but at the of the simulation period, males showed higher use than females. 
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Figure 17. Projected e-cig prevalence by gender among initial late former cigarette smokers in the US. 
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Figure 18 presents the projected estimates of e-cig use by race among late former cigarette 

smokers. The majority of e-cig users among late former smokers belonged to the white 

race. Both black and other races projections showed a similar number of e-cig users at the 

end of the simulation period.    
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Figure 18. Projected e-cig prevalence by race among initial late former cigarette smokers in the US. 
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Figure 19 presents the projected estimates of e-cig use by different education levels among 

late former cigarette smokers. Among late former smokers, the highest e-cig use was 

projected in the smokers who had at least a college level education. Less than high school 

education and high school education had lower number of e-cig users.  
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Figure 19. Projected e-cig prevalence by education among initial late former cigarette smokers in the US. 
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E-cig Prevalence in Never Cigarette Smokers 

 
 

 

 

 
 

Figure 20 presents the projected e-cig use for the overall population of never cigarette 

smokers in the US. Similar to the late former smokers, the e-cig prevalence in never 

smokers was projected to be lower in magnitude. The prevalence grew steeply from 0.12% 

to 1.1% in first five years, and then showed an increase to 1.8% at the end of the simulation 

period.  
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Figure 20. Projected estimate of e-cig prevalence among initial never cigarette smokers in the US. 
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Figure 21 presents the projected estimates of e-cig use in never smokers classified by the 

two age groups. The prevalence at the end of the simulation period was found higher 

among never smokers in the age groups of 6-20 years than those in 21-35 years. Both age 

groups showed a steep rise in e-cig use for first 5 years and then showed a steady raise till 

the end of the simulation period.   
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Figure 21. Projected e-cig prevalence by age groups among never cigarette smokers 



www.manaraa.com

 
 

 
 

Figure 22 presents the projected estimates of e-cig use by gender among never cigarette 

smokers. The projected estimates showed that the prevalence was almost similar in males 

and females at the beginning of the simulation period, and at the end of the simulation 

period females were found to be higher users of e-cigs.  
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Figure 22. Projected e-cig prevalence by gender among never cigarette smokers 
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Figure 23 presents the projected estimates of e-cig use by race among never cigarette 

smokers. Similar to other smoking categories, the majority of e-cig users among never 

smokers belonged to the white race. The projected estimates showed a consistent white 

majority of never smokers who became e-cig users, compared to black and other races 

through the simulation period. Never smokers belonging to other races showed a slightly 

higher number of e-cig users projections compared to black smokers.  
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Figure 23. Projected e-cig prevalence by race among never cigarette smokers 
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Figure 24 presents the projected estimates of e-cig use by different education levels among 

never cigarette smokers. The highest number of e-cig users was projected in never smokers 

who had less than high school level education. It was followed by never smokers who had 

at least high school education. Lastly, the lowest number of e-cig users among never 

smokers had a college degree.   
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Figure 24. Projected e-cig prevalence by education level among never cigarette smokers 
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Figure 25. Projected estimate e-cig prevalence in the US population over the simulation period. 

 

Figure 25 presents the projected e-cig use in the model population over the simulation 

period. It was observed that the e-cig use showed a steady growth till the 7th year (15.8%), 

and then showed a decline in the growth from 7th until the 15th year. The e-cig prevalence 

at the end of the simulation period was found to be 19.3%.  
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Figure 26. Comparison of projected e-cig use and conventional cigarette use over the simulation period. 

 
Assuming all the conventional cigarette users transitioned completely to e-cig use without 

any dual use period, we compared the projected e-cig use and the conventional cigarette 

use over the same simulation period (Figure 26). In the conventional cigarette use group, 

the initial population consisted of smokers in the CS, RFS and LFS groups. Each subsequent 

year, the total number of e-cig users at the end of each year from these three groups were 

subtracted from the conventional cigarette group, since we assumed that once a person 

switched to e-cig use, he or she could not go back to using conventional cigarette. The 

conventional cigarette use was found to reduce from 40% to 25% at the end of simulation 

period.  
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Figure 27. Projected e-cig prevalence by age groups in the US population  

 

Figure 27 presents the projected estimates of e-cig use classified by different age groups. 

Among different age groups, the highest prevalence at the end of the simulation period was 

found in people who belonged to the age groups of <21 years and 21-35 years old. It was 

followed by age group 51-65 years and 36-50 years and the lowest number of e-cig users 

were found to be in the age groups of >65 years.  
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Figure 28. Projected e-cig prevalence by gender in the US population 

 

Figure 28 presents the projected estimates of e-cig use by gender. It was observed that in 

the initial stages, e-cig use was more prevalent in females compared to females. However, 

at the end of the simulation period the prevalence was almost similar in males and females, 

approximately 9.5%.  
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Figure 29. Projected e-cig prevalence by race in the US population 

 

Figure 29 presents the projected estimates of e-cig use by race. It was observed that the 

majority of e-cig users belonged to the white race. The projected estimates showed a 

consistent white majority of e-cig users through the simulation period, compared to black 

and other races. Further, people who belonged to the black race showed a higher e-cig use 

than other racial groups.  
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Figure 30. Projected e-cig prevalence by education level in the US population 

 
Figure 30 presents the projected estimates of e-cig use by different education levels. The 

highest number of e-cig users belonged to people with less than high school education. It 

was followed by people who had at least a college degree, and then people who had at least 

high school level education.  
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Sensitivity Analyses 

 

Scenarios 
Prevalence in current smokers (end of 

15 years) 
Reduction in initiating  
risk due to policy 

2% 18.32% 

3% 16.19% 

5% 14.78% 

  
Change in timing of  
policy implementation 

5 years 18.68% 

10 years 21.93% 

No Policy 23.47% 

  
Proportion of people making a quit  
attempt within a year (±15%) 

33% 18.14% 

63% 20.28% 

  
Proportion of people staying quitter  
for that year (±15%) 

14% 18.91% 

4% 19.95% 

 

Prevalence of e-cig use was found to be most sensitive to change in risk associated with 

policies, and time of implementation of the policies. When the risk was increased to 2% 

each year, the prevalence at the end of the simulation period was found to be reduced to 

18.32% from 19.33%.  Increasing it further to 3% and 5% resulted in the reduction of 

prevalence to 16.19% and 14.78%, respectively. Similarly when the time of policy 

application was changed from 7 years to 5 years, prevalence reduced from 19.33% to 

18.68%. When it was changed to 10 years, the prevalence increased to 21.93%. When there 

was no policy application at all, the prevalence was increased to 23.47%. We also evaluated 

Table 10.Prevalence estimates at the end of 15 years for different scenarios in sensitivity analyses in current smokers 
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the impact of changing the proportion of people making a quit attempt, and making a 

relapse within the same year. The results of this scenarios did not show a huge impact on 

the prevalence of e-cig use the end of the simulation period. On decreasing and increasing 

the proportion of people making a quit attempt within a year by 15% resulted in a final 

prevalence of 18.14% and 20.28%, respectively. On decreasing and increasing the 

proportion of people staying a quitter for that year after making a quit attempt by 15%, 

resulted in a final prevalence of 18.91% and 19.95%, respectively. 
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Chapter 4 

 

Discussion 
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The primary objective of this study was to develop a validated DES model to allow for the 

assessment of e-cig use behavior and prevalence of e-cig in different population groups, 

using data from literature review of several cross-sectional survey and longitudinal e-cig 

studies done on the US population. The simulation replicated the initiating patterns, quit 

attempts and relapses associated with the e-cig use in current, former and never cigarette 

smokers. The model also allowed the change of smoking status between the three smoking 

groups, through the simulation period. We were also able to apply the effect of history by 

including information on prior simulated quit attempts, in addition to individuals’ 

characteristics at the time of each subsequent quit attempt, to make predictions. Further, 

the model gave us an opportunity to investigate the impact of e-cig related policies on the 

prevalence patterns into the future and examining possible real-life patterns of e-cig use.  

 

Our study results showed that e-cig use was projected to be the highest in current cigarette 

smoking population, followed by recent former smokers, late former smokers and lowest in 

never smokers. The projected estimate after the first year of simulation in current smokers 

was found to be around 2.1%. This finding was found to be consistent with the results of a 

survey conducted by CDC which reported the prevalence of regular e-cig use to be around 

1.9% (King et al., 2013). It provides initial evidence to support the model validity and its 

potential to obtain accurate estimates with adequate data availability. The overall 

projected e-cig use for the population of current cigarette smokers in the US was found to 

increase to 6.7% in eight years, and then to 7.9% at the end of the simulation period. The 

slow growth rate after 8 years could be attributed to the launch of the e-cig control policy, 



www.manaraa.com

which was implemented at the 7th year, and which resulted in lowering risk of initiation of 

e-cig each subsequent year. Next, the prevalence of e-cig use in recent former smokers was 

found to be less than current smokers, but still considerably higher than late former and 

never smokers. The e-cig use pattern followed the same trajectory as in current smokers, 

indicating the behavior of recent former and current smokers towards the use of e-cig is 

not very different. In late former smokers and never smokers, the e-cig use was projected 

to be lower than current and recent former smokers. This was consistent in current trend 

in the use of e-cig, where the only never smokers who become regular e-cig users are 

relatively young adults and teenagers, resulting in a low overall population prevalence 

(Camenga et al., 2014).   

 

Differences in the use of e-cigarettes were observed across subpopulations. Specifically, 

younger age groups, whites, females and smokers having less than high school education 

were found to be highest users of the e-cig among current, recent former, and never 

smokers. Higher use among younger adults may be related to the fact that e-cigarettes are 

traditionally marketed through electronic and social media (Noel, Rees, & Connolly, 2011; 

Yamin, Bitton, & Bates, 2010). Also, the higher prevalence of use among current smokers 

could be related to the marketing of e-cigarettes as smoking cessation aids (Adkison et al., 

2013; Etter & Bullen, 2014).  

 

Our research provides context to identify future population-based changes related to e-cig 

use and guide the design of a more informative longitudinal research. National data on e-

cig use by middle and high school students gathered via the National Youth Tobacco Survey 
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in 2011 and 2012 reported that among middle and high school students, ever-use of e-

cigarettes (tried at least once) increased from 3.3% to 6.8%, whereas current use (within 

the last 30 days) increased from 1.1% to 2.1% (Agaku et al., 2014). That data was correctly 

estimated by our model as observed by the results of the 1st year simulation. Another 

analysis of National Youth Tobacco Survey data from the same time period confirmed that 

current e-cigarette users were much more likely to be current cigarette smokers, which 

was consistent with our findings (Bunnell et al., 2015).  

 

Our study is also a first in modeling the impact of future policies regulating e-cigs at 

different times.  Because e-cig is a new product, lack of scientific evidence has been a key 

factor for the absence of federal regulations. Our study provides an opportunity to examine 

the potential impact of future policies on e-cigs use by modeling risk reduction each 

subsequent year after implementation of a policy. Another advantage of our study was that 

we were able to show the impact of varying the policy effect, specifically the magnitude of 

risk and the time at which the policy will be implemented, in our sensitivity analyses.  

 

Our model also enables meaningful analyses of outcomes in population subgroups. For 

instance, the prevalence of e-cig use among younger age group and white people could be 

more comprehensively captured. By accounting for subject characteristics when predicting 

e-cig use, relapse, and quit attempts, this model provides a powerful tool to evaluate the 

usefulness of e-cigs for improving quit rates, and reducing the risk of relapse among 

different subgroups of the population. 
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With the current ongoing research on the health effects related to the use e-cigs, this model 

could be used to predict vaping-related disease and health utilities once the data becomes 

available. Although the exact information on diseases attributed to e-cig use is not be 

expected to come out in near future, but the effects on proxy measures, such as 

physiological biomarkers, will be able to provide some insight in the risks related to the use 

of e-cigs.  

 

We have to be mindful of the fact that a large proportion of current e-cig users are 

concurrently using conventional cigarettes (Brandon et al., 2015). Since we did not have 

access to longitudinal individual level data, we were not able to model the time dependent 

aspects of e-cig behavior such as time to first quit attempt, time to relapse, time spent by a 

smoker in transitioning from cigarette to e-cig. This information when available, could be 

used by the investigators to predict the time-dependent aspects listed above to estimate 

important outcomes such as duration of time where the current cigarette smoker is using 

both product (dual use), or time taken to completely switch to e-cig.  

 

The main strength of this model is that it was able to incorporate significant predictors of 

e-cig initiation obtained from the literature and show their cumulative effect in making the 

individuals use or not use an e-cig. Thus, this model structure could provide a solid 

foundation from which a flexible, lifetime e-cig use behavior model can be developed that 

can accommodate multiple quit attempts, relapse, transitioning between current, former 

and never users over time in diverse populations.  
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The main impediment to developing a lifetime DES is the difficulty in obtaining accurate 

and reliable data on long term patterns of quit attempts. Data that would allow for accurate 

individualized predictions on sequences of smoking behavior, intervals between quit 

attempts and long-term relapse rates, are required to fully harness the potential of the 

modelling technique. Nevertheless, even in the absence of these data, a lifetime DES built 

on the current model would allow for informative exploratory analyses that are grounded 

in reliable individualized predictions and patterns. Based on our literature review, we 

believe that the data is currently being collected and will be released sometime in near 

future. Once the data is available, capturing the time-dependent relationships will add 

tremendous value to a lifetime model.   

 

We believe that the data related to e-cig attributed mortality will not become available in 

near future. Hence, it will not be possible to model the mortality rates related to e-cig use. 

However, it is certainly possible to use the rates of smoking-related disease attributed to e-

cig use, compare them with disease rates attributed to conventional cigarette smoking and 

other tobacco products, and predict mortality after applying appropriate assumptions.  

 

In future, additional validation of the model predictions would also increase confidence in 

the reliability of the current predictive equations. The structural validation and the 

comparison of the results against the data sources indicated that the simulation predicted 

the short term prevalence estimates close to the real values, and performed well when 
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implemented in key population subgroups. However, validation exercises performed 

against sources different than those used in developing the core equations would be 

valuable.  

 

Data on e-cig use by youth and adults have been gathered primarily from Web-based 

surveys and convenience sampling, including regional samples, and from participants in 

online e-cigarette forums. Interpreting such data is difficult, and it is necessary that data 

collected at the individual level is released publicly, to foster research on different areas of 

interests related to e-cigs. Furthermore, most of the cross sectional or survey research 

published till date use has evaluated just the short term use of e-cig use, mostly for 1 or 2 

years. Similarly, the clinical trials studies conducted on e-cig use have also followed the e-

cig users for the duration of 6 months or 12 months. Our model used that information, 

incorporated into our model, followed the e-cig users for 15 years, and tried to project the 

behavior pattern and the use trajectory of e-cigs.  

 

Some studies observed that e-cigs may contribute to prevent relapse in former smokers 

and to promote smoking cessation in current smokers, which essentially means getting 

them off from conventional cigarettes (Biener & Hargraves, 2015; McMillen et al., 2014). It 

would have been a significant outcome to look at in our model as well however, the 

evidence is still scarce according to our review of the published literature. 
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We made a strong assumption in our study that all e-cigs contained nicotine. The recent 

policy statement on e-cigs from the American Association for Cancer Research reported 

that currently there are around 7000 unique flavored e-cigs on the market (Brandon et al., 

2015). The report suggested that flavored tobacco is particularly appealing to youth, and 

some flavored combustible products potentiate continued use and addiction. There is a 

concern that flavored e-cigs may have a similar effect on the youth, however there is no 

available studies which have accessed flavors in general (Brandon et al., 2015). In future, 

our model can be used when the data on flavors becomes available, to estimate the impact 

of different flavors on the pattern of e-cig use among the young users. 

 

The use of e-cigs by never smokers would present a public health concern, but this is a 

particular concern with respect to youth, especially if e-cigs serve as a pathway to other 

tobacco products, including combustible cigarettes (Grana, 2013). In our study, we were 

limited by the data availability and could only estimate the transition of never smokers to 

e-cigs but could not model their transition to the use of regular tobacco products. However 

in near future, with the availability of adequate data, we could show transition of never 

smokers from e-cigs to other tobacco products can be a significant application of this 

model.  

 

Population benefit or harm depends largely on public’s perception of the products and 

their patterns of use. The risk may increase if dual use with other tobacco products is 

prevalent, or cessation is deterred by persons using e-cigs to circumvent smoke-free laws. 
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Studies conducted with e-cigarette users, demonstrated that they perceive the products to 

be less toxic than conventional cigarettes and have used them as a smoking cessation 

device or to avoid exposing others to tobacco smoke (Brown et al., 2014; Pearson et al., 

2012). However, the research on their efficacy for smoking cessation is still ongoing and 

most of the published studies reported a small sample size making their studies 

underpowered. Further research on the rates and health effects of dual use is critical for 

assessing and considering total public health impact of e-cigs. Future studies should try to 

assess the dose–response relationship for certain biomarkers of cardiovascular effects or 

lung cancer effects with the use of e-cigs.  

 

The evidence regarding the risks and benefits of e-cigs in different segments of the 

population such as current smokers and never smokers is difficult to interpret, because the 

market place of e-cigs products is evolving rapidly. Research in this field is complicated by 

the ever-changing and wide variability among and within different e-cig products, a lack of 

standardized definitions of e-cigs, variable user terminology, and a lack of established 

protocols for conducting e-cig research, including clinical trials (Brandon et al., 2015). 

However, despite these challenges, research on e-cigs is on the right track and progressing 

rapidly. The NIH and the FDA are providing recommendations for studying these products, 

including different population sub groups such as healthy volunteers as well as vulnerable 

populations, such as people suffering from cancer and those with other acute or chronic 

medical conditions. More research is needed to understand how different design features 

relate to dependence and toxicity, including if the compounds in e-cigs react chemically and 

if these compounds are absorbed into the bloodstream. Research is also needed to 
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understand the effect e-cig use, including second- and third hand exposure to population as 

well. Studies should also examine the efficacy and safety of e-cigs in patients with cancer 

treated with surgery, chemotherapy, and radiotherapy and potential interactions with 

these therapies. Among smokers, long term controlled clinical trials are needed to 

determine whether e-cigs facilitate or hinder short- and long-term smoking cessation as 

well as whether it increases nicotine dependence. Studies should consider also outcomes 

related to health conditions such as cardiovascular diseases, COPD, lung cancer and stroke. 

These conditions have an established history with conventional cigarette smoking.  
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Limitations 

 

The biggest limitation of this study was the use of self-reported values of e-cig use based on 

age, gender, race and education status. Due to the absence of standardized recorded 

individual level data, we were unable to obtain the mutually exclusive prediction 

probabilities. However, we used appropriate mathematical rules to get a correct estimate 

of the probabilities associated with the e-cig use. The model also relied on a number of data 

sources, including surveys and longitudinal e-cig studies done on the different populations, 

which may be responsible for variation in the results across different groups. Another 

limitation was not able to differentiate people who make a quit attempt and relapse, and 

those who do not relapse. We did allow a definite proportion of people to pass through, but 

that proportion was directly utilized from a survey without the knowledge of individual 

characteristics of people making or not making the quit attempt or relapse (Kasza et al., 

2014). Next important limitation was that we could not validate our model projections 

against real world data. Because e-cig is a relatively new product, long term longitudinal 

studies will be required to compare and validate the results of our model. Additionally, 

time to quit attempt, time to relapse, and time to transition from regular cigarette to e-cig 

was not modelled because of lack of time dependent data. Because the smokers were 

generated and assigned attributes based on the NHIS data, simulated patients may not 

accurately represent real-world patients, which could limit generalizability to real-world 

settings. In addition, we assumed everyone to be undergoing the changes and going 

through different states as defined by the path of the model. This does not happen in the 

real world, where the movement of people is more dynamic and random.  
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Chapter 5 

 

Conclusion 
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The benefits and harms of e-cig use must be evaluated with respect to the population as a 

whole and take into account the effect on youth, adults, never smokers, former smokers 

and current smokers. There are currently too few data on the behavior pattern of e-cigs 

and their efficacy as cessation products to recommend their use for the general population. 

Our study evaluates the long term use pattern of e-cigs in the US population. We mainly 

estimated the prevalence of e-cigs in current, former and never smokers for the period of 

15 years, using the current data. Our population model will help predict changes in 

individual behaviors and patterns associated with the use of e-cigs. It will also help to 

address the problem of scarce data resources related to e-cig use and provide guidance for 

conducting more research on generating real world evidence to look into more relevant 

outcomes. It will also encourage policymakers to review the rapidly changing pattern of e-

cig use and make public health decisions by using our future projection of e-cig use.  
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Table 11. Model Population descriptive results: 

 Current smokers 

(N= 12665)  

 

Former smokers 

(N= 15226)  

  
 

Never smokers 

(N=40801) 

Age (%)         

<21 years 

21-35 years 

36-50 years 

51-65 years 

>65 years 

 

1.825 

34.701 

33.901 

23.760 

5.811 

 

0.511 

13.602 

18.954 

31.671 

35.272 

 

2.771 

29.484 

30.732 

22.859 

14.151 

Gender 

Male 

Female 

 

55.554 

44.445 

 

52.453 

47.556 

 

42.115 

57.884 

Race 

       White 

       Black 

       Other 

 

68.279 

13.949 

17.771 

 

80.394 

8.061 

11.552 

 

66.37 

12.228 

24.534 

Education status 

Less than high school  

High school diploma 

 

 Any college 

 

9.615 

43.781 

46.603 

 
 

11.598 

37.813 

50.589 

 

63.237 

12.228 

24.534 

CPD (Means, SD) 11.87, 8.80 ------------- -------------- 

Years of regular smoking 

(Means, SD) 

27.02, 15.69   
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At least 1 quit attempt in 

past 12 months 
46.97  

 

--------------- -------------- 
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Table 12. Simulated population for each year after applying the birth and death rates 

 

Simulated population for 5 years  

Years   + Birth rate -Death rate 
Total 

population 

1 
Initial N= 

100000.00 0.00 0.00 100000.00 

2 100000.00 101330.00 100478.83 100478.83 

3 100478.83 101815.20 100959.95 100959.95 

4 100959.95 102302.72 101443.37 101443.37 

5 101443.37 102792.57 101929.11 101929.11 

6 101929.11 103284.77 102417.18 102417.18 

7 102417.18 103779.33 102907.58 102907.58 

8 102907.58 104276.25 103400.33 103400.33 

9 103400.33 104775.55 103895.44 103895.44 

10 103895.44 105277.25 104392.92 104392.92 

11 104392.92 105781.35 104892.78 104892.78 

12 104892.78 106287.86 105395.04 105395.04 

13 105395.04 106796.79 105899.70 105899.70 

14 105899.70 107308.17 106406.78 106406.78 

15 106406.78 107821.99 106916.28 106916.28 
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Prevalence estimates for each year 

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Overall 
Percent 
Prevalence 2.0952 3.1025 3.9464 4.5391 5.1388 5.8339 6.1518 6.6226 6.9427 7.2835 7.3419 7.5792 7.6215 7.6802 7.7148 

Standard 
errors 

 
0.852 

 
0.767 

 
0.813 

0.675 0.684 0.774 0.868 
 

0.796 
0.873 

 
0.782 0.654 0.861 0.882 0.768 0.685 

Age                     
 

    

6-20 years 0.5826 0.9695 1.2824 1.4517 1.6182 1.8133 2.0445 2.0865 2.1158 2.2344 2.2705 2.2953 2.3284 2.3164 2.3941 

21-35 years 0.5381 0.7115 0.9218 1.2703 1.4681 1.5212 1.6367 1.7366 1.9511 2.0468 2.1718 2.2674 2.2931 2.3075 2.3413 

36-50 years 0.1794 0.2285 0.4001 0.6269 0.8405 0.9502 1.0414 1.0508 1.0843 1.0229 1.0643 1.0834 1.1648 1.1592 1.1692 

51-65 years 0.5939 0.6424 0.9912 1.2189 1.3881 1.4943 1.5048 1.6676 1.6991 1.8369 1.7642 1.7149 1.7298 1.7643 1.7985 

>65 years 0.2012 0.2112 0.2088 0.1888 0.1315 0.1244 0.1561 0.1625 0.1225 0.0625 0.0682 0.0546 0.0513 0.0496 0.0482 

                      
 

    

Gender 
                    

 
    

Male  0.9312 1.4244 1.8615 2.1164 2.5347 2.8361 2.9832 3.3398 3.6464 3.7331 3.7251 3.8563 3.8426 3.9321 3.9167 

Female 1.1643 1.6687 2.0437 2.3802 2.6918 2.9239 3.1748 3.2937 3.4235 3.5525 3.6278 3.7231 3.7825 3.7514 3.8024 

                      
 

    

Race 
                    

 
    

White 1.0985 1.4027 1.8233 2.1594 2.3637 2.5579 2.7679 2.9042 3.0492 3.1856 3.2041 3.2984 3.3231 3.3649 3.4025 

Black 0.8543 1.1145 1.4529 1.7638 1.9286 2.1242 2.2404 2.4497 2.5234 2.6493 2.6643 2.7673 2.7965 2.8052 2.8543 

Other 0.3424 0.5619 0.6588 0.8034 0.8408 1.1254 1.1335 1.3289 1.3856 1.4675 1.5124 1.5243 1.5671 1.5241 1.5934 

                      

 
    

Education 
level 

                     
    

Less than high 
school 

0.8367 1.4694 1.7032 1.9367 2.2411 2.4358 2.5636 2.7027 2.8613 2.9152 3.0734 3.1243 3.1906 3.2834 3.3127 
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Table 13. Projected e-cig prevalence for each year in the simulation period within different demographic categories of current cigarette smokers.

High school 0.5985 0.8163 1.0102 1.1423 1.3365 1.5272 1.6598 1.7668 1.8379 1.9316 1.8854 1.9465 1.8437 1.8671 1.8207 

College 0.66 1.0174 1.2418 1.4666 1.5612 1.8809 1.9484 2.1643 2.2134 2.3123 2.3965 2.5119 2.5974 2.6074 2.6846 
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Prevalence estimates for each year 

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Overall 
Percent 
Prevalence 2.0444 3.5079 4.4298 5.2325 5.7254 6.1126 6.6843 7.1021 7.2324 7.3062 7.3483 7.3841 7.4267 7.4608 7.5117 

Standard 
errors 

 
0.852 

 
0.767 

 
0.813 

 
0.675 

 
0.684 

 
0.774 

0.868 
 

0.796 
0.873 

 
0.782 0.654 0.861 0.882 0.768 0.685 

Age                     
 

    

6-20 years 0.8584 1.4431 1.8023 2.1168 2.2941 2.4029 2.4967 2.5069 2.5993 2.6026 2.6037 2.6041 2.6571 2.6519 2.6934 

21-35 years 0.5852 0.9058 1.1331 1.3213 1.4415 1.6039 1.8146 2.0217 2.1132 2.2102 2.2167 2.2583 2.3119 2.3508 2.3781 

36-50 years 0.3803 0.6961 0.9849 1.0673 1.1589 1.2704 1.3198 1.4625 1.4492 1.4951 1.4803 1.4545 1.4237 1.4209 1.4068 

51-65 years 0.117 0.3275 0.4829 0.6125 0.8047 0.9754 1.0975 1.1189 1.1136 1.0239 1.0228 1.0193 1.0346 1.0285 1.0274 

>65 years 0.06963 0.0718 0.0926 0.1006 0.09872 0.09312 0.0857 0.0755 0.0729 0.0615 0.0601 0.0583 0.0549 0.0486 0.0431 

                      
 

    

Gender 
                    

 
    

Male  0.8199 1.5683 2.0191 2.3315 2.4435 2.8098 3.1144 3.4887 3.4852 3.5228 3.5579 3.5816 3.5894 3.5926 3.6051 

Female 1.2267 1.9456 2.4148 2.9014 3.2851 3.3178 3.5714 3.6124 3.7479 3.7845 3.7901 3.8002 3.8373 3.8719 3.9047 

                      
 

    

Race 
                    

 
    

White 1.0949 1.7359 2.1449 2.7073 2.9332 3.2344 3.4121 3.5218 3.6012 3.6424 3.6593 3.6804 3.6979 3.7014 3.7107 

Black 0.4163 0.9577 1.0825 1.1132 1.2802 1.3151 1.4754 1.6535 1.5981 1.5972 1.6043 1.5941 1.5538 1.5406 1.5912 

Other 0.5356 0.8247 1.2085 1.4122 1.5161 1.7275 1.8078 1.9358 2.0314 2.1574 2.1701 2.2045 2.2179 2.2282 2.2196 

                      

 
    

Education 
level 

                     
    

Less than high 
school 0.6832 1.2108 1.6356 1.9082 2.1088 2.2772 2.4736 2.6997 2.7104 2.7829 2.7902 2.8007 2.8517 2.8861 2.8942 

High school 0.4737 0.8826 1.0617 1.2959 1.4042 1.5114 1.7323 1.8052 1.9421 1.9602 1.9054 1.9342 1.9865 1.9907 1.9145 
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College 0.8748 1.4085 1.7325 2.0284 2.2124 2.3244 2.4676 2.5215 2.584 2.6163 2.6304 2.6584 2.6841 2.689 2.7123 

Table 14. Projected e-cig prevalence for each year in the simulation period within different demographic categories of recent former cigarette smokers. 



www.manaraa.com

 
 
 



www.manaraa.com

Prevalence estimates for each year 

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Overall 
Percent 
Prevalence 0.2968 0.6148 0.8914 1.1746 1.3793 1.5313 1.6759 1.7946 1.9372 2.0112 2.1409 2.1764 2.2034 2.2374 2.2946 
Standard 
errors 

0.152  
  

0.167 
  

0.183 
0.175  

  
0.184 

  
0.174 

  
0.168 

  
0.196 

  
0.173 

0.182  
0.154 0.181 0.182 0.168 0.185 

Age                     
 

    

6-20 years 0.1433 0.1763 0.1856 0.1942 0.2243 0.2772 0.2868 0.3126 0.3243 0.3346 0.3371 0.3458 0.3549 0.3824 0.3945 

21-35 years 0.1239 0.2061 0.2409 0.2967 0.3909 0.4874 0.5224 0.5903 0.6493 0.7824 0.8106 0.8347 0.8643 0.8943 0.8973 

36-50 years 0.05784 0.1084 0.1423 0.1698 0.2691 0.3029 0.3407 0.3941 0.4172 0.438 0.4672 0.4827 0.5042 0.5247 0.5382 

51-65 years 0.0685 0.1258 0.1931 0.2413 0.2915 0.3342 0.3616 0.4022 0.4391 0.4482 0.4691 0.4782 0.4893 0.5092 0.5247 

>65 years 0.00317 0.0179 0.0318 0.0259 0.0357 0.0414 0.04176 0.04123 0.0409 0.04124 0.0462 0.0497 0.0582 0.0416 0.0472 

                      
 

    

Gender 
                    

 
    

Male  0.1415 0.2853 0.4312 0.5291 0.6407 0.7734 0.8125 0.9042 0.9313 1.0942 1.258 1.211 1.218 1.241 1.2954 

Female 0.1541 0.2951 0.4673 0.6413 0.6683 0.7667 0.8534 0.8946 0.9067 0.9184 0.9361 0.9643 0.9833 0.9892 1.0028 

                      
 

    

Race 
                    

 
    

White 0.1953 0.2774 0.3986 0.4928 0.6147 0.6913 0.7105 0.7831 0.8182 0.9395 1.0523 1.0612 1.1085 1.1191 1.1574 

Black 0.0215 0.1442 0.2326 0.3201 0.3731 0.3966 0.4091 0.4127 0.4813 0.4977 0.5413 0.5543 0.5691 0.5724 0.5746 

Other 0.0795 0.2085 0.2774 0.3695 0.4313 0.4839 0.5084 0.5225 0.5876 0.6187 0.6431 0.6582 0.6307 0.6479 0.6852 

                      

 
    

Education 
level 

                     
    

Less than high 
school 

0.1292 0.1249 0.2076 0.2774 0.2905 0.3141 0.3571 0.4085 0.4162 0.4471 0.4682 0.4709 0.4829 0.4936 0.5014 

High school 0.0773 0.1701 0.2331 0.3254 0.3803 0.4062 0.4851 0.5014 0.5273 0.5523 0.5973 0.6073 0.6243 0.6429 0.6824 



www.manaraa.com

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

College 0.0903 0.2049 0.4612 0.5847 0.6324 0.7642 0.8486 0.8813 0.8936 1.0174 1.0985 1.1085 1.0972 1.1023 1.1102 

Table 15. Projected e-cig prevalence for each year in the simulation period within different demographic categories of late former cigarette smokers. 
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Prevalence estimates for each year 

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Overall Percent 
Prevalence 0.1239 0.5103 0.6944 1.0115 1.1284 1.3058 1.3778 1.4019 1.4835 1.5086 1.5619 1.6731 1.7116 1.7513 1.8092 
Standard 
errors 

0.152  
  

0.167 
  

0.183 
0.175  

  
0.184 

  
0.174 

  
0.168 

  
0.196 

  
0.173 

0.182  
0.154 0.181 0.182 0.168 0.185 

Age                     
 

    

6-20 years 0.0749 0.3329 0.4286 0.6572 0.7224 0.7975 0.8089 0.8241 0.8537 0.8729 0.8763 0.914 0.9557 0.9605 0.9856 

21-35 years 0.049 0.1774 0.2658 0.3543 0.4654 0.5142 0.5772 0.5878 0.6347 0.6392 0.6842 0.7598 0.7545 0.7981 0.8152 

                      
 

    

Gender 
                    

 
    

Male  0.0453 0.2216 0.3227 0.4398 0.5021 0.6297 0.6765 0.6816 0.7181 0.7278 0.7515 0.7841 0.8071 0.8234 0.8372 

Female 0.0717 0.2974 0.3717 0.5728 0.6263 0.6736 0.7008 0.7203 0.7695 0.7813 0.8173 0.8864 0.9054 0.9276 0.9634 

                      
 

    

Race 
                    

 
    

White 0.0616 0.2274 0.2894 0.3991 0.4372 0.5106 0.5617 0.5832 0.5993 0.6076 0.6143 0.6928 0.7014 0.7153 0.7386 

Black 0.0175 0.1104 0.1912 0.2857 0.3111 0.3735 0.3733 0.3717 0.4169 0.4247 0.4562 0.4734 0.4871 0.4985 0.5221 

Other 0.0379 0.1635 0.2238 0.3467 0.3756 0.4212 0.4428 0.4561 0.4873 0.4862 0.4913 0.5138 0.5243 0.5382 0.5472 

                      

 
    

Education 
level 

                    
 

    

Less than high 
school 0.0667 0.2259 0.3171 0.4511 0.5161 0.6135 0.6449 0.6571 0.6738 0.6917 0.7114 0.7643 0.7841 0.7937 0.7925 

High school 0.0416 0.1845 0.2267 0.3252 0.3583 0.3835 0.4051 0.4224 0.4307 0.4415 0.4521 0.4721 0.4876 0.4908 0.4921 

College 0.0087 0.1175 0.1606 0.2452 0.2638 0.3148 0.3236 0.3251 0.3801 0.3748 0.4072 0.4362 0.4472 0.4421 0.4529 

Table 16. Projected e-cig prevalence for each year in the simulation period within different demographic categories of never cigarette smokers. 



www.manaraa.com

 
 



www.manaraa.com

 

Using Arena 
 

The Arena modeling environment can be started from the Start menu and navigated to 

Programs > Rockwell Software > Arena. The Arena modeling environment will open with a 

new model window 
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To model the process in Arena, we work in three main regions of the application window. 

The Project Bar hosts panels with the primary types of objects that we work with: The 

basic Process panel contains the modeling shapes, called modules that are used to define 

the process. Reports panel contained the reports that are available for displaying results of 

simulation runs. Navigate panel allows to display different views of the model, including 

navigating through hierarchical sub-models and displaying a model thumbnail. 
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Building the model in Arena 

 

1) Creating the smokers 
 

First part consisted of generating 100,000 smokers and assigning an exponential 

distribution to their time of arrival. 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

 

 

2) Sending the smokers into one of the four smoking groups 
 

Next, based on the NHIS distribution of CS, RFS, LFS and NS, the generated smokers 

were sent into one of the 4 branches. 

 

 

3) Assigning the baseline characteristics  
 

Next step was to assign the baseline characteristics to the smokers based on the NHIS 

estimates, and assigning corresponding probability distributions. Following figure 

shows the assignment of baseline characteristics and smoking related characterstics to 

CS. Similar assignments were done to RFS, LFS and NS.   
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4) Assigning history 

Next step in CS was to assign history of quit attempts to the generated population of 

current smokers. The quit attempts history were assigned in a way that any new 

attempt made inside the simulation model will  be added on to the previous quite 

attempts incorporated in the history. 
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5) Risk assignment 

The following figure shows how to assign the risk/mutually unexclusive probabilities 

based on the baseline and smoking related attributes.   

 

 

 

The following figure shows the assignment of risks related to different levels of age 

groups, by indexing the risks in 5 different rows corresponding to 5 different age 

groups. 
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6) Decide the initiation of e-cig  

This was decided by applying the probability equations discussed in the methods 

section. The equation was inserted to percent true module as shown in the figure below. 

 

 

 



www.manaraa.com

 

7) Quit attempt and relapse within one year  

This was done by allowing 48% of smokers to pass through the true branch and rest 

52% to pass through the false branch. Within those 48%, 9% were allowed to pass 

through without making a relapse. Rest of them made a relapse and went into the loop 

again. 
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8) Increase in risk of initiation with every relapse 

The risk of initiating an e-cig in the next year increased with every quit attempt made in 

the simulation. This was assigned as shown below. 

 

 

 

9) Recording prevalence 
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People who made a relapse and who were continuing to use e-cig were recorded as e-

cig users, and were recorded as regular e-cig user.  

 

 

10) Waiting for another year 

After the end of 1 year, smokers were allowed to wait for one year and assigned a new 

age.  
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11) Modeling the effect of policy 

The policy effect was modelled by assigning an overall risk which reduced by 1% each 

year, a person decided to wait to initiate the e-cig.  
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12) Setting up the simulation 
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Finally, the run is set up by filling up the details in the run setup window. The model 

was made to run 100 replications for each group for each cycle. The vales can be 

changed by the users as per the objectives. The model clock and initial date could be 

assigned as shown below. 
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